Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Immune cell age plays role in retinal damage in age-related macular degeneration

05.11.2007
Studying a mouse model of age-related macular degeneration, the leading cause of blindness in older Americans, scientists at Washington University School of Medicine in St. Louis have found age is key in determining whether damaging blood vessels will form beneath the retina and contribute to vision loss.

The scientists discovered that specific immune cells called macrophages play a role in the disease process in older mice by failing to block the development of abnormal, leaky blood vessels behind the retina. But in younger mice, macrophages typically prevent abnormal blood vessel formation.

The scientists believe better understanding of how macrophages work may provide potential targets for therapies to slow or even reverse vision loss. The findings are reported in the November issue of the Journal of Clinical Investigation.

Age-related macular degeneration is the leading cause of blindness in the United States in people over the age of 50. It accounts for more than 40 percent of blindness among the elderly in nursing homes, and as baby boomers get older, the problem is expected to grow, with at least 8 million cases predicted by the year 2020.

Whether the macrophages will block or encourage the growth of damaging blood vessels is related to the subtype of macrophage according to principal investigator Rajendra S. Apte, M.D., Ph.D., assistant professor of ophthalmology and visual sciences.

"There are two basic types of macrophages — known as M1 and M2 — and in the older mice, there was a preponderance of cells with the M2 signature," he says. "These M2 cells promoted abnormal blood vessel growth in the eyes of older mice. In younger mice, most macrophages had the M1 signature, and those cells inhibited the development of defective blood vessels."

Apte says it appears the population of macrophages drifts from the M1 type to M2 cells because of an increase in the levels of an immune system molecule called interleukin-10 (IL-10) in the eye as the mice get older. In a previous study, his team had found that high levels of IL-10 interfere with macrophages' ability to regulate blood vessel growth. As mice got older, the animals made more IL-10, and this caused more macrophages to become the M2 type.

"The older mice had much higher levels of IL-10," Apte explains. "That suggests IL-10 may be driving this process because higher IL-10 levels are associated with more M2 macrophages that cannot regulate blood vessel growth, and lack of IL-10, as in genetic knockout mice, leads to a preponderance of M1 macrophages."

The blood vessels that form in age-related macular degeneration are not like the mature vessels found in most of the body. Vessels associated with the disease don't have normal, tight junctions, but rather leak and bleed. They also tend to be located beneath the macula, the center of the retina, and when they bleed, the result is loss of vision.

Just as there are two types of macrophages, there also are two types of macular degeneration: a "dry" form and a "wet" form. Most patients have the dry form of the disease, which sometimes can progress and cause severe vision loss. But between 80 and 90 percent of blindness occurs in the wet form of the disease and is caused by abnormal blood vessel growth beneath the retina.

Apte's team studied both young and old mice whose eyes were treated with a laser that spurs the growth of the damaging blood vessels. Although the acute laser injury is not identical to the chronic damage caused by the disease, Apte says the animal model has been remarkably successful in identifying therapies to treat the blinding eye disease.

Some of the laser-treated mice could not make IL-10. Previously, Apte's team found that mice genetically engineered without IL-10 develop fewer abnormal vessels beneath the retina. That also was true in this study. One reason may be that mice without IL-10 have mostly M1 macrophages, which inhibit new blood vessel formation.

It may be true, Apte says, that as people age, they experience increases in IL-10 levels, as well as other cytokines that influence a drift towards M2 macrophages just as the mice do. It's also possible that factors such as smoking, uncontrolled high blood pressure or a genetic pre-disposition may enhance this process.

"It appears from the mice we've studied that the microenvironment in and around the eye might influence how macrophages behave and what subclass of macrophages is likely to be present," Apte says. "We believe this cascade involving IL-10 and macrophages provides potential targets for therapies to prevent some of the devastating vision loss that affects so many patients with age-related macular degeneration and may even be useful in treating other diseases that involve abnormal blood vessel growth, such as cancer and heart disease."

Jim Dryden | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Health and Medicine:

nachricht Vanishing capillaries
23.03.2017 | Technische Universität München

nachricht How prenatal maternal infections may affect genetic factors in Autism spectrum disorder
22.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>