Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


OHSU researchers identify master switch that regulates blood pressure

A team of Oregon Health & Science University researchers studying a rare form of hypertension has identified the mechanism by which they believe a protein complex in the kidney operates as a master switch that regulates blood pressure, a finding that has broad implications for the treatment of more common forms of hypertension.

The team led by David H. Ellison, M.D. – whose findings are described in a paper being published today (NOV. 1) in the Journal of Clinical Investigation – likens the switch to a rheostat that modulates the balance of salt and potassium in the kidney, thereby raising or lowering blood pressure.

When the switch malfunctions, the group suggests, high blood pressure or hypertension occurs, as it does when certain mutations in the WNK kinase protein complex are present. Those genetic defects cause a disease called familial hyperkalemic hypertension (FHHt), also called pseudohypoaldosteronism type 2 or Gordon’s syndrome. The OHSU group and others have focused on FHHt, which is rare, in a search for clues to how blood pressure is regulated in the more common form of high blood pressure, known as essential hypertension, often labeled the silent killer.

Hypertension affects at least 50 million Americans and untold millions around the world and is a major cause of heart attacks, strokes and kidney failure. The root cause is unknown in 95 percent of cases. If the study’s conclusions are borne out in further research, they can lead to better targeted and more effective drugs for the disease, said Ellison, a professor of medicine in the OHSU School of Medicine and head of its Division of Nnephrology and Hypertension.

“It is not widely understood by the general public that hypertension is most often a kidney disease,” said Ellison. “If we can figure out the ways the kidney adjusts salt excretion, we can devise methods to prevent hypertension, cure it or design better treatments for it. Our findings in this study get us a step closer, we think.”

Ellison and his colleagues, Chao-Ling Yang, M.D., and Xiaoman Zhu, M.D., M.S., focused in the study on the complex interactions between the WNK1, WNK3 and WNK4 kinases in regulating NCC, a protein that normally keeps salt in the body. They explain for the first time that WNK 3 plays a key role in this process and that none of the WNK kinases act alone but function as a unit.

“These WNKs form a protein signaling complex,” said Ellison. “All three WNKs talk to each other. Only when you understand how they work together and talk to each other can you understand the real biology of the disease. The complex acts as a rheostat-controlled amplifier that modulates the activity of NCC, the salt transporter gene, in response to physiological needs. The disease really is caused by a glitch in communications between the different WNKs regulating NCC.”

Protein kinases constitute one of the largest human gene families and are key regulators of cell function. There are 518 of them – referred to as the human kinome – and they coordinate a wide variety of complex biological functions. The WNK kinases, which were discovered in 2000, have been a subject of intense interest among medical researchers since 2001 when a group at the Yale University School of Medicine found a link between this class of kinases and FHHt. Ellison and his group subsequently found that mutations in WNK1 and WNK4 cause this disease by modulating NCC activity.

The current OHSU study explains how aldosterone, a hormone produced in the adrenal gland, can have different effects on sodium and potassium balance at different times. The hormone sometimes increases salt absorption and at other times increases potassium excretion, but how it knows which role to play has been a mystery.

“We think the answer is the WNK kinases, which switch aldosterone from a sodium chloride (salt) -retaining hormone to a potassium-wasting hormone,” said Ellison. “When you inherit a mutation in one of the WNK kinases the switch gets turned in the wrong direction. The switching mechanism explains for the first time why eating a high potassium diet lowers blood pressure. High potassium not only stimulates aldosterone secretion but also modulates WNK kinase activity; together aldosterone and certain WNK kinases cause the kidney to rid itself of potassium rather than reabsorbing salt.”

The OHU study also breaks new ground in refining the explanation of how WNK mutations cause FHHt.

“We showed that the way the mutations cause the disease is with the participation of WNK3,” said Ellison. “Unlike WNK4, which inhibits NCC, the salt cotransporter, WNK3 has a stimulative effect. If there’s more WNK3, you’ll have more salt reabsorption, and if there’s more WNK4, you’ll have less. What also happens is that WNK4 normally inhibits WNK3, but mutant WNK4 blocks this effect, thereby generating more active WNK3, increasing salt transport and causing the disease.”

Harry Lenhart | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>