Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Laser-Based Imaging for Early Diagnosis of Rheumatoid Arthritis

24.04.2002


Study Documents Imaging Technique’s Accuracy in Detecting the Course of Finger Joint Inflammation



Findings Indicate Need to Combine Laser Imaging with Other Diagnostic Tools


A team of specialists in laser medicine has developed an imaging technique with the potential to dramatically improve the early diagnosis and treatment of Rheumatoid Arthritis (RA). According to the team’s study, which is published in the May 2002 issue of Arthritis & Rheumatism, this innovative laser-based technology can detect the course of finger joint inflammation in RA patients—with an accuracy rate of up to 83%.



A chronic, progressive disease, RA often leads to early disability and joint deformity. Recent studies have suggested that this devastating disease might well be prevented, or at least delayed, by early diagnosis and treatment. Given the widespread availability of effective therapeutic approaches, early diagnosis could change the quality of life for countless RA patients. Until now, conventional radiography has been the standard method of identifying destructive arthritis. This method, however, routinely overlooks early changes of erosion, the destructive process in cartilage and bone that can lead to deformity. While other imaging procedures, such as ultrasound or magnetic resonance imaging (MRI), offer possible alternatives for uncovering early evidence of arthritis and its progression, they have definite downsides. MRI can be costly and lacks standardization; ultrasound is time consuming and observers need training.

“The new laser imaging technique is easy to handle, inexpensive, and noninvasive,” attests research team leader Alexander K. Scheel. “It therefore has many advantages over conventional imaging and provides new information about joint status.”

The study was performed with an innovative laser device created by the Department of Medical Physics and Laser Medicine at the Free University of Berlin in cooperation with Siemens. Over a six-month period, 22 RA patients, ranging in age from 22 to 75 and representing both genders, committed to an ongoing examination of soft tissue changes and acute inflammation of their proximal finger joints. Positioned above the finger joint and working in conjunction with a sensitive camera, the laser device captured the optical characteristics of normal and inflamed joints then processed them through a picture software program. The inflammatory status of 60 of the 72 joints examined was classified correctly by laser imaging, confirmed through rigorous comparisons of hand radiographs and clinical evaluations. Researchers rated the laser technique 80% for sensitivity, 89% for specificity, and 83% for accuracy in detecting inflammatory changes in affected joints.

The results indicate that laser-based imaging can contribute significantly to diagnostic capabilities. Providing an affordable, accessible, and reproducible assessment of inflammatory joint changes, this unique imaging technique can help rheumatologists pinpoint RA of small finger joints and swiftly determine the most effective treatment.

Yet, Scheel and his team readily admit that laser imaging alone cannot replace other diagnostic methods. Although it can play a pivotal role in sensitive follow-up analysis of joint inflammation and provide important information about the response to medication, laser imaging, at this stage, only offers limited help for an individual diagnosis of early arthritis due to anatomic differences of the joint structures. Accurate diagnosis still depends on clinical examination, including measurements of joint circumference.

“Laser imaging may supplement our imaging armament and help us to better assess our arthritis patients,” Scheel observes. “However, additional studies with more patients and a comparison with other, established imaging techniques have to be performed before the overall usefulness of this new technology can be conclusively evaluated.”

Joanna Gibson | alphagalileo

More articles from Health and Medicine:

nachricht Hot cars can hit deadly temperatures in as little as one hour
24.05.2018 | Arizona State University

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>