Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

From Russia with gloves

23.04.2002


Ex-Soviet Union viruses could fill antibiotic gap.



Russian remedies could take out hardy US bacteria. Long-abandoned by Western medicine, viruses that naturally kill microbes are being imported as a potential substitute for antibiotics.

The emergence of multi-drug-resistant bacteria is intensifying the search for antibiotic replacements. Bemoaning the problem, clinician Glenn Morris of the University of Maryland in College Park got an idea from a colleague from the former Soviet republic of Georgia. Morris explains: "He said, ’why don’t you use ’phage therapy?’; I said, ’what’s ’phage therapy?’."


’Phages - more properly, bacteriophages - are viruses that are harmless to humans but kill bacteria. They were widely researched as a means to tackle disease until the 1940s. When potent antibiotics appeared on the scene, the West discarded them.

Eastern Europe and the former Soviet Union pursued ’phage therapy, so ’phage creams, pills and plasters are commonly available there. Now Morris and his colleagues are carrying out basic tests to update the treatments for US product licenses.

Worktops contaminated with the foodborne bacteria Listeria are clean within 24 hours of ’phage treatment, he told the Experimental Biology 2002 meeting in New Orleans on Sunday. Salmonella and Escherichia coli are similarly wiped out. ’Phages could be used in food production or packaging, Morris suggests.

Unlike antibiotics, ’phages kill only a specific bacterial type, leaving other, beneficial bugs intact. For example, antibiotic resistant strains of the gut bacteria Enterococcus, which can cause dangerous infections after surgery or in chemotherapy patients, are also being tackled.

We are naturally surrounded by ’phages. The type that Morris is using attack and multiply inside bacteria then split them apart to escape. The ’phages keep killing until their victims run out, and then quietly die.

Cold science

Part of the reason that the West dropped ’phages was that bacteria might evade them, says Richard Young, who studies pathogenic microbes at the Whitehead Institute in Cambridge, Massachusetts. A single change in the bacterial receptor to which they bind could render it resistant to the virus: "It was viewed as its Achilles heel," he says.

A mixture of 30-40 different ’phages all aimed at the same bug should get around this problem. "A cocktail is important," agrees Heidi Kaplan, who studies antibiotic-resistant bacteria at the University of Texas Medical School in Houston.

"US science tends to have a prejudice against Soviet science," adds Morris, who now collaborates with the Eliava Institute of Bacteriophage, Microbiology and Virology in Tbilisi, Georgia. But Morris is not alone in trying to bring down the scientific cold wall - two small biotech companies besides his are also on the case.

HELEN PEARSON | © Nature News Service

More articles from Health and Medicine:

nachricht Correct connections are crucial
26.06.2017 | Charité - Universitätsmedizin Berlin

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>