Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fibromyalgia pain caused by neuron mismatch

31.10.2007
The unexplained pain experienced by patients with fibromyalgia is the result of a mismatch between sensory and motor systems, new research suggests.

In a study published in the journal Rheumatology, researchers asked patients to look at a reflection of one arm whilst moving their other in a different direction which was hidden behind the mirror.

This created a mismatch between what the brain sees via sensory input and what it feels through the motor system that controls movement.

Of the 29 patients involved in the study, 26 reported feeling a transient increase in pain, temperature change or heaviness in their hidden limb - all symptoms of a ‘flare up’ of their condition.

This suggests that a mismatch between sensory and motor neurons could be at the root of the fibromyalgia – a condition affecting one in 100 people in the UK at some stage of their lives.

“The chronic pain experienced by people with fibromyalgia is hard to understand because there are no obvious clinical signs that pain should be experienced,” said Dr Candy McCabe, one of the researchers involved in the University of Bath and Royal National Hospital for Rheumatic Diseases study.

“We have shown that by confusing the motor and sensory systems we can exacerbate the symptoms felt by people diagnosed with the condition.

“This adds to a growing body of evidence that many of the symptoms of this common disorder may be perpetuated, or even triggered, by this sensory-motor conflict.

“We have had some success to date in using a similar technique to help alleviate the symptoms of this kind of chronic pain.

“This works by helping the brain to see a limb moving freely without pain – although in reality it is a reflection of their pain-free limb.”

Volunteers in the study were asked to perform a series of bilateral upper and lower limb movements with a mirror in front of them at a right-angle.

This meant that one limb was obscured from view behind the mirror whilst they could clearly see the other limb and its reflection.

They first carried out the same movements with both limbs, and then made different movements.

This enabled the researchers to see what effect confusing what the brain could see with what it could feel.

“Nearly all of the group reported an increase in the sensations connected with their condition in the hidden limb,” said Dr McCabe.

“This provides strong evidence that sensory-motor conflict is at the heart of this condition.

“Some clinicians do not recognise fibromyalgia as a diagnosis because of a lack of clinical reason for the pain.

“It is often considered to be a reflection of anxiety or attention seeking behaviour which, for people with the condition, can be very hard to deal with.

“Nevertheless, fibromyalgia is one of the most common conditions seen by rheumatologists.

“Hopefully we are beginning to understand more about the condition, and taking steps towards how it might be treated in the future.”

People with fibromyalgia complain of widespread pain, multiple tender points, stiffness, sleep disturbance and fatigue.

Around nine out of ten of those affected by fibromyalgia are women. In most cases it develops between the ages of 30 and 60, but it can develop in people of any age, including children and the elderly.

There are around 14,700 new cases in the UK each year.

Andrew McLaughlin | alfa
Further information:
http://www.bath.ac.uk/news/2007/10/31/fibromyalgia.html

More articles from Health and Medicine:

nachricht Oxygen can wake up dormant bacteria for antibiotic attacks
08.12.2016 | Penn State

nachricht NTU scientists build new ultrasound device using 3-D printing technology
07.12.2016 | Nanyang Technological University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>