Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fibromyalgia pain caused by neuron mismatch

31.10.2007
The unexplained pain experienced by patients with fibromyalgia is the result of a mismatch between sensory and motor systems, new research suggests.

In a study published in the journal Rheumatology, researchers asked patients to look at a reflection of one arm whilst moving their other in a different direction which was hidden behind the mirror.

This created a mismatch between what the brain sees via sensory input and what it feels through the motor system that controls movement.

Of the 29 patients involved in the study, 26 reported feeling a transient increase in pain, temperature change or heaviness in their hidden limb - all symptoms of a ‘flare up’ of their condition.

This suggests that a mismatch between sensory and motor neurons could be at the root of the fibromyalgia – a condition affecting one in 100 people in the UK at some stage of their lives.

“The chronic pain experienced by people with fibromyalgia is hard to understand because there are no obvious clinical signs that pain should be experienced,” said Dr Candy McCabe, one of the researchers involved in the University of Bath and Royal National Hospital for Rheumatic Diseases study.

“We have shown that by confusing the motor and sensory systems we can exacerbate the symptoms felt by people diagnosed with the condition.

“This adds to a growing body of evidence that many of the symptoms of this common disorder may be perpetuated, or even triggered, by this sensory-motor conflict.

“We have had some success to date in using a similar technique to help alleviate the symptoms of this kind of chronic pain.

“This works by helping the brain to see a limb moving freely without pain – although in reality it is a reflection of their pain-free limb.”

Volunteers in the study were asked to perform a series of bilateral upper and lower limb movements with a mirror in front of them at a right-angle.

This meant that one limb was obscured from view behind the mirror whilst they could clearly see the other limb and its reflection.

They first carried out the same movements with both limbs, and then made different movements.

This enabled the researchers to see what effect confusing what the brain could see with what it could feel.

“Nearly all of the group reported an increase in the sensations connected with their condition in the hidden limb,” said Dr McCabe.

“This provides strong evidence that sensory-motor conflict is at the heart of this condition.

“Some clinicians do not recognise fibromyalgia as a diagnosis because of a lack of clinical reason for the pain.

“It is often considered to be a reflection of anxiety or attention seeking behaviour which, for people with the condition, can be very hard to deal with.

“Nevertheless, fibromyalgia is one of the most common conditions seen by rheumatologists.

“Hopefully we are beginning to understand more about the condition, and taking steps towards how it might be treated in the future.”

People with fibromyalgia complain of widespread pain, multiple tender points, stiffness, sleep disturbance and fatigue.

Around nine out of ten of those affected by fibromyalgia are women. In most cases it develops between the ages of 30 and 60, but it can develop in people of any age, including children and the elderly.

There are around 14,700 new cases in the UK each year.

Andrew McLaughlin | alfa
Further information:
http://www.bath.ac.uk/news/2007/10/31/fibromyalgia.html

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>