Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Fibromyalgia pain caused by neuron mismatch

The unexplained pain experienced by patients with fibromyalgia is the result of a mismatch between sensory and motor systems, new research suggests.

In a study published in the journal Rheumatology, researchers asked patients to look at a reflection of one arm whilst moving their other in a different direction which was hidden behind the mirror.

This created a mismatch between what the brain sees via sensory input and what it feels through the motor system that controls movement.

Of the 29 patients involved in the study, 26 reported feeling a transient increase in pain, temperature change or heaviness in their hidden limb - all symptoms of a ‘flare up’ of their condition.

This suggests that a mismatch between sensory and motor neurons could be at the root of the fibromyalgia – a condition affecting one in 100 people in the UK at some stage of their lives.

“The chronic pain experienced by people with fibromyalgia is hard to understand because there are no obvious clinical signs that pain should be experienced,” said Dr Candy McCabe, one of the researchers involved in the University of Bath and Royal National Hospital for Rheumatic Diseases study.

“We have shown that by confusing the motor and sensory systems we can exacerbate the symptoms felt by people diagnosed with the condition.

“This adds to a growing body of evidence that many of the symptoms of this common disorder may be perpetuated, or even triggered, by this sensory-motor conflict.

“We have had some success to date in using a similar technique to help alleviate the symptoms of this kind of chronic pain.

“This works by helping the brain to see a limb moving freely without pain – although in reality it is a reflection of their pain-free limb.”

Volunteers in the study were asked to perform a series of bilateral upper and lower limb movements with a mirror in front of them at a right-angle.

This meant that one limb was obscured from view behind the mirror whilst they could clearly see the other limb and its reflection.

They first carried out the same movements with both limbs, and then made different movements.

This enabled the researchers to see what effect confusing what the brain could see with what it could feel.

“Nearly all of the group reported an increase in the sensations connected with their condition in the hidden limb,” said Dr McCabe.

“This provides strong evidence that sensory-motor conflict is at the heart of this condition.

“Some clinicians do not recognise fibromyalgia as a diagnosis because of a lack of clinical reason for the pain.

“It is often considered to be a reflection of anxiety or attention seeking behaviour which, for people with the condition, can be very hard to deal with.

“Nevertheless, fibromyalgia is one of the most common conditions seen by rheumatologists.

“Hopefully we are beginning to understand more about the condition, and taking steps towards how it might be treated in the future.”

People with fibromyalgia complain of widespread pain, multiple tender points, stiffness, sleep disturbance and fatigue.

Around nine out of ten of those affected by fibromyalgia are women. In most cases it develops between the ages of 30 and 60, but it can develop in people of any age, including children and the elderly.

There are around 14,700 new cases in the UK each year.

Andrew McLaughlin | alfa
Further information:

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>