Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Combining existing strategies could prevent nearly half of new extensively drug-resistant tuberculosis cases

26.10.2007
A synergistic combination of available nosocomial* infection control strategies could prevent nearly half of extensively drug-resistant** (XDR) tuberculosis cases, even in resource-limited settings. These are the conclusions of authors of an Article in this week’s edition of The Lancet.

XDR tuberculosis has been reported in 37 countries (as of May 2007), and has been identified in all regions of the world. South Africa has had the largest cluster of XDR cases, with incidence in every region of the country. Over 200 cases have been reported from 40 sites in the KwaZulu-Natal province alone, the first 53 of which were in the rural town of Tugela Ferry.

Sanjay Basu, Yale University School of Medicine, New Haven, CT, USA, and colleagues combined computer modelling with data from a multi-year epidemiological study to investigate the effect of administrative, environmental ,and personal infection control measures on the epidemic trajectory of XDR tuberculosis in Tugela Ferry. The model simulated inpatient airborne tuberculosis infection, community tuberculosis transmission, and the effect of HIV and anti-retroviral therapy. The model was found to be more than 95% accurate at estimating the course of the disease when evaluated against the latest data from South Africa.

They found that in no new interventions are introduced, around 1300 cases of XDR tuberculosis could occur in the Tugela Ferry area by 2012, more than half are which are likely to be transmitted within the hospital. Use of masks alone would prevent fewer than 10% of cases in the general epidemic, but could, vitally, prevent a large proportion of cases in hospital staff. Combined use of masks, reduced hospitalisation time and a shift to outpatient therphy could prevent nearly a third of cases; and combining this approach with improved ventilation, rapid drug resistance testing, HIV treatment, and tuberculosis isolation facilities could avert nearly half (48%) of cases.

However, the authors add that lengthy hospitalisation or involuntary detention in the absence of sufficient isolation facilities could actually increase the incidence of XDR tuberculosis, since the increased risk of nosocomial transmission outweighed the impact of decreased community-based transmission resulting from these policies.

They conclude by saying their current projections highlight the need for immediate action in addressing the XDR tuberculosis epidemic. The burden of XDR tuberculosis on the health system is already high in this area, and is expected to rise substantially over the next few years.

They say: “Effective hospital-based strategies to limit the transmission of XDR tuberculosis are within reach, even in resource-limited settings…such comprehensive programmes should be rapidly implemented throughout KwaZulu-Natal and the rest of South Africa. Addition community-based strategies should also be developed in parallel, since hospital-based efforts alone might not fully curtail XDR tuberculosis transmission.”

In an accompanying Comment, Dr Travis Porco, University of California, San Francisco, CA, USA, and Dr Wayne Getz, University of California, Berkeley, CA, USA, say: “Multidrug and extensive drug resistance are monsters of our own creation. They might be with us longer than we think and might need us to spend more than governments or institutions are willing or able to pay. Although scientific warnings are often ignored until too late, effective interventions for the control of XDR tuberculosis in Africa are national and international responsibilities, and the world community ignores this message at great peril.”

*Nosocomial infections are those which are contracted as result of a patients treatment in a hospital or healthcare service unit, but secondary to the patients original condition.

**XDR tuberculosis is defined as tuberculosis which is resitant to isoniazid, rifampicin, any fluoroquinolone, and at least one of three injectable second-line drugs (ie. amikacin, kanamycin, or capreomycin).

Tony Kirby | alfa
Further information:
http://multimedia.thelancet.com/pdf/press/Tuberculosis.pdf

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>