Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New ways of fighting ‘super bugs’ in hospitals

Researchers in Bradford are investigating the effects of humidity on hospital ‘super bugs’ using one of the largest known biological test chambers in the world.

The Bradford Infection Group (BIG), based within the University of Bradford’s Schools of Engineering, Design & Technology and Life Sciences, was recently awarded funding worth over £175,000 to investigate an alternative strategy for controlling hospital acquired infections.

The grant, from the Department of Health’s National Institute for Health Research NHS Physical Environment Research Programme, will support BIG’s two-year programme of research which will involve simulating a hospital ward environment using a brand new state-of-the-art aerobiological test chamber housed at the University of Bradford.

This facility, thought to be the largest in the UK and one of the largest known facilities of its kind in the world, allows microbiological experiments to be undertaken in a completely controlled environment and enables researchers to mimic parts of hospitals, such as isolation wards.

Head of the Bradford Infection Group is Clive Beggs, Professor of Medical Engineering at the University of Bradford. He said: “Approximately one in ten patients pick up an infection during a hospital stay. While hand washing and other hygiene measures are vital, evidence suggests that these measures alone are not always enough to prevent certain infections and therefore a fresh approach is needed.

“We know that many Gram-negative bacteria desiccate and die in dry environments. We are therefore investigating the extent to which humidity control might assist in the fight against infection.”

Director General of Research and Development at the Department of Health, Professor Sally C. Davies, said: “Preventing and controlling hospital acquired infections is an absolute priority for patients and the NHS.

“We need to investigate all the potential causes from every conceivable angle to make sure we are providing hospitals with the best available information and enable them to focus on priority areas.

“The finds of this important research will support NHS Trusts in the delivery of clean, safe and reliable health care.”

The research group will be modelling the impact of humidity on bacteria and, in particular, looking at how humidity control might be used to prevent the spread of infection via contaminated surfaces and air in hospital wards.

Dr Anna Snelling, Microbiologist at the University of Bradford and a member of the BIG, said: “The biological impact of changes in room humidity on different pathogens is something that is still poorly understood. This is an important and much overlooked subject which may hold the key to future improvements in ward cleanliness.”

The aerobiological test chamber at the University of Bradford has just recently been completed and is 80m3 in size. This facility is one of very few in the world and is similar to the chamber at Harvard University in the USA.

“We are very pleased to have such a world class facility,” added Professor Beggs. “It will greatly assist us in our experiments and should enable the Group to investigate the efficacy of a wide range of hygiene and disinfection products in partnership with healthcare providers and industry.”

Oliver Tipper | alfa
Further information:

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>