Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Infrared imaging for sleep apnea diagnosis shows promise

24.10.2007
Remote heat imaging identifies sleep disorder without disturbing patients

Sleep apnea is commonly diagnosed by way of measuring airflow by nasal pressure, temperature, and/or carbon dioxide, through sensors placed in the nose. However, this method is uncomfortable to some and can potentially disturb sleep. But new research, presented at CHEST 2007, the 73rd annual international scientific assembly of the American College of Chest Physicians (ACCP), shows that remote infrared imaging can monitor airflow and accurately detect abnormalities during sleep, without ever coming in contact with the patient. The study indicates that the new method is ideal because it is portable and can monitor sleep in a natural environment.

“Polysomnography is a diagnostic test, which establishes the presence or absence of sleep disorders. But standard methods have the potential to significantly disturb a patient’s sleep pattern, so what we see in the lab may not be a true representation of the patient’s sleep habits,” said lead study author Jayasimha Murthy, MD, Assistant Professor of Medicine, University of Texas Health Science Center at Houston, TX. “However, remote infrared imaging is a noncontact method, so there is minimal interference with the patient. In fact, this system can be designed to where the patient isn’t even aware that monitoring is taking place.”

In the first study of its kind, Dr. Murthy and his colleagues from the University of Texas Health Science Center at Houston, the University of Houston, and Memorial Hermann Sleep Disorders Center in Houston, TX, evaluated the efficacy of remote infrared imaging (IR-I) in 13 men and women without known sleep apnea. Researchers recorded the heat signals expired from patients’ nostrils or mouth using an infrared camera during 1 hour of polysomnography. To minimize any bias, airflow channels were recorded and analyzed separately. Results were then compared with those obtained through the conventional methods of sleep apnea diagnosis, including nasal pressure, nasal-oral thermistors, and capnography.

“The underlying principle of monitoring the relative changes in airflow based on the changing of the infrared heat signal is similar to that of the traditional thermistor,” Dr. Murthy explained. “However, the biggest difference is that the thermistor is placed in the subject’s nostril while the infrared camera is placed 6 to 8 feet from the patient’s head. Also, this method allows us to have recorded data, so we can go back and extract the airflow data after the completion of the study, which we can’t do with conventional sensors.”

Upon completion, results showed that IR-I detected 20 sleep-disordered breathing events, compared with 22 events detected by the nasal-oral thermistor, and 19 events detected by nasal pressure. Given the outcome, researchers suggest that IR-I was in near-perfect agreement with conventional methods and that it represents a noncontact alternative to standard nasal-oral thermistors. Though Dr. Murthy acknowledges that this study represents a preliminary stage of testing, he is optimistic about the future of infrared imaging for sleep disorder diagnosis.

“The results from this study will greatly impact the development of this technology,” he said. “While implementation of this technology for clinical studies is still far away, these early results are encouraging enough for us to pursue this further.”

“Sleep apnea is a debilitating condition that affects millions of Americans and can lead to other, life-threatening illnesses,” said Alvin V. Thomas, Jr., MD, FCCP, President of the American College of Chest Physicians. “It is important for physicians and researchers to continue to explore new diagnostic tools in order to detect and treat this sleep disorder at the earliest possible stage.”

Deana Busche | EurekAlert!
Further information:
http://www.chestnet.org

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>