Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Infrared imaging for sleep apnea diagnosis shows promise

24.10.2007
Remote heat imaging identifies sleep disorder without disturbing patients

Sleep apnea is commonly diagnosed by way of measuring airflow by nasal pressure, temperature, and/or carbon dioxide, through sensors placed in the nose. However, this method is uncomfortable to some and can potentially disturb sleep. But new research, presented at CHEST 2007, the 73rd annual international scientific assembly of the American College of Chest Physicians (ACCP), shows that remote infrared imaging can monitor airflow and accurately detect abnormalities during sleep, without ever coming in contact with the patient. The study indicates that the new method is ideal because it is portable and can monitor sleep in a natural environment.

“Polysomnography is a diagnostic test, which establishes the presence or absence of sleep disorders. But standard methods have the potential to significantly disturb a patient’s sleep pattern, so what we see in the lab may not be a true representation of the patient’s sleep habits,” said lead study author Jayasimha Murthy, MD, Assistant Professor of Medicine, University of Texas Health Science Center at Houston, TX. “However, remote infrared imaging is a noncontact method, so there is minimal interference with the patient. In fact, this system can be designed to where the patient isn’t even aware that monitoring is taking place.”

In the first study of its kind, Dr. Murthy and his colleagues from the University of Texas Health Science Center at Houston, the University of Houston, and Memorial Hermann Sleep Disorders Center in Houston, TX, evaluated the efficacy of remote infrared imaging (IR-I) in 13 men and women without known sleep apnea. Researchers recorded the heat signals expired from patients’ nostrils or mouth using an infrared camera during 1 hour of polysomnography. To minimize any bias, airflow channels were recorded and analyzed separately. Results were then compared with those obtained through the conventional methods of sleep apnea diagnosis, including nasal pressure, nasal-oral thermistors, and capnography.

“The underlying principle of monitoring the relative changes in airflow based on the changing of the infrared heat signal is similar to that of the traditional thermistor,” Dr. Murthy explained. “However, the biggest difference is that the thermistor is placed in the subject’s nostril while the infrared camera is placed 6 to 8 feet from the patient’s head. Also, this method allows us to have recorded data, so we can go back and extract the airflow data after the completion of the study, which we can’t do with conventional sensors.”

Upon completion, results showed that IR-I detected 20 sleep-disordered breathing events, compared with 22 events detected by the nasal-oral thermistor, and 19 events detected by nasal pressure. Given the outcome, researchers suggest that IR-I was in near-perfect agreement with conventional methods and that it represents a noncontact alternative to standard nasal-oral thermistors. Though Dr. Murthy acknowledges that this study represents a preliminary stage of testing, he is optimistic about the future of infrared imaging for sleep disorder diagnosis.

“The results from this study will greatly impact the development of this technology,” he said. “While implementation of this technology for clinical studies is still far away, these early results are encouraging enough for us to pursue this further.”

“Sleep apnea is a debilitating condition that affects millions of Americans and can lead to other, life-threatening illnesses,” said Alvin V. Thomas, Jr., MD, FCCP, President of the American College of Chest Physicians. “It is important for physicians and researchers to continue to explore new diagnostic tools in order to detect and treat this sleep disorder at the earliest possible stage.”

Deana Busche | EurekAlert!
Further information:
http://www.chestnet.org

More articles from Health and Medicine:

nachricht Millions through license revenues
27.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>