Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Infrared imaging for sleep apnea diagnosis shows promise

24.10.2007
Remote heat imaging identifies sleep disorder without disturbing patients

Sleep apnea is commonly diagnosed by way of measuring airflow by nasal pressure, temperature, and/or carbon dioxide, through sensors placed in the nose. However, this method is uncomfortable to some and can potentially disturb sleep. But new research, presented at CHEST 2007, the 73rd annual international scientific assembly of the American College of Chest Physicians (ACCP), shows that remote infrared imaging can monitor airflow and accurately detect abnormalities during sleep, without ever coming in contact with the patient. The study indicates that the new method is ideal because it is portable and can monitor sleep in a natural environment.

“Polysomnography is a diagnostic test, which establishes the presence or absence of sleep disorders. But standard methods have the potential to significantly disturb a patient’s sleep pattern, so what we see in the lab may not be a true representation of the patient’s sleep habits,” said lead study author Jayasimha Murthy, MD, Assistant Professor of Medicine, University of Texas Health Science Center at Houston, TX. “However, remote infrared imaging is a noncontact method, so there is minimal interference with the patient. In fact, this system can be designed to where the patient isn’t even aware that monitoring is taking place.”

In the first study of its kind, Dr. Murthy and his colleagues from the University of Texas Health Science Center at Houston, the University of Houston, and Memorial Hermann Sleep Disorders Center in Houston, TX, evaluated the efficacy of remote infrared imaging (IR-I) in 13 men and women without known sleep apnea. Researchers recorded the heat signals expired from patients’ nostrils or mouth using an infrared camera during 1 hour of polysomnography. To minimize any bias, airflow channels were recorded and analyzed separately. Results were then compared with those obtained through the conventional methods of sleep apnea diagnosis, including nasal pressure, nasal-oral thermistors, and capnography.

“The underlying principle of monitoring the relative changes in airflow based on the changing of the infrared heat signal is similar to that of the traditional thermistor,” Dr. Murthy explained. “However, the biggest difference is that the thermistor is placed in the subject’s nostril while the infrared camera is placed 6 to 8 feet from the patient’s head. Also, this method allows us to have recorded data, so we can go back and extract the airflow data after the completion of the study, which we can’t do with conventional sensors.”

Upon completion, results showed that IR-I detected 20 sleep-disordered breathing events, compared with 22 events detected by the nasal-oral thermistor, and 19 events detected by nasal pressure. Given the outcome, researchers suggest that IR-I was in near-perfect agreement with conventional methods and that it represents a noncontact alternative to standard nasal-oral thermistors. Though Dr. Murthy acknowledges that this study represents a preliminary stage of testing, he is optimistic about the future of infrared imaging for sleep disorder diagnosis.

“The results from this study will greatly impact the development of this technology,” he said. “While implementation of this technology for clinical studies is still far away, these early results are encouraging enough for us to pursue this further.”

“Sleep apnea is a debilitating condition that affects millions of Americans and can lead to other, life-threatening illnesses,” said Alvin V. Thomas, Jr., MD, FCCP, President of the American College of Chest Physicians. “It is important for physicians and researchers to continue to explore new diagnostic tools in order to detect and treat this sleep disorder at the earliest possible stage.”

Deana Busche | EurekAlert!
Further information:
http://www.chestnet.org

More articles from Health and Medicine:

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>