Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Infrared imaging for sleep apnea diagnosis shows promise

Remote heat imaging identifies sleep disorder without disturbing patients

Sleep apnea is commonly diagnosed by way of measuring airflow by nasal pressure, temperature, and/or carbon dioxide, through sensors placed in the nose. However, this method is uncomfortable to some and can potentially disturb sleep. But new research, presented at CHEST 2007, the 73rd annual international scientific assembly of the American College of Chest Physicians (ACCP), shows that remote infrared imaging can monitor airflow and accurately detect abnormalities during sleep, without ever coming in contact with the patient. The study indicates that the new method is ideal because it is portable and can monitor sleep in a natural environment.

“Polysomnography is a diagnostic test, which establishes the presence or absence of sleep disorders. But standard methods have the potential to significantly disturb a patient’s sleep pattern, so what we see in the lab may not be a true representation of the patient’s sleep habits,” said lead study author Jayasimha Murthy, MD, Assistant Professor of Medicine, University of Texas Health Science Center at Houston, TX. “However, remote infrared imaging is a noncontact method, so there is minimal interference with the patient. In fact, this system can be designed to where the patient isn’t even aware that monitoring is taking place.”

In the first study of its kind, Dr. Murthy and his colleagues from the University of Texas Health Science Center at Houston, the University of Houston, and Memorial Hermann Sleep Disorders Center in Houston, TX, evaluated the efficacy of remote infrared imaging (IR-I) in 13 men and women without known sleep apnea. Researchers recorded the heat signals expired from patients’ nostrils or mouth using an infrared camera during 1 hour of polysomnography. To minimize any bias, airflow channels were recorded and analyzed separately. Results were then compared with those obtained through the conventional methods of sleep apnea diagnosis, including nasal pressure, nasal-oral thermistors, and capnography.

“The underlying principle of monitoring the relative changes in airflow based on the changing of the infrared heat signal is similar to that of the traditional thermistor,” Dr. Murthy explained. “However, the biggest difference is that the thermistor is placed in the subject’s nostril while the infrared camera is placed 6 to 8 feet from the patient’s head. Also, this method allows us to have recorded data, so we can go back and extract the airflow data after the completion of the study, which we can’t do with conventional sensors.”

Upon completion, results showed that IR-I detected 20 sleep-disordered breathing events, compared with 22 events detected by the nasal-oral thermistor, and 19 events detected by nasal pressure. Given the outcome, researchers suggest that IR-I was in near-perfect agreement with conventional methods and that it represents a noncontact alternative to standard nasal-oral thermistors. Though Dr. Murthy acknowledges that this study represents a preliminary stage of testing, he is optimistic about the future of infrared imaging for sleep disorder diagnosis.

“The results from this study will greatly impact the development of this technology,” he said. “While implementation of this technology for clinical studies is still far away, these early results are encouraging enough for us to pursue this further.”

“Sleep apnea is a debilitating condition that affects millions of Americans and can lead to other, life-threatening illnesses,” said Alvin V. Thomas, Jr., MD, FCCP, President of the American College of Chest Physicians. “It is important for physicians and researchers to continue to explore new diagnostic tools in order to detect and treat this sleep disorder at the earliest possible stage.”

Deana Busche | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Advanced analysis of brain structure shape may track progression to Alzheimer's disease
26.10.2016 | Massachusetts General Hospital

nachricht Indian roadside refuse fires produce toxic rainbow
26.10.2016 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>