Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

HIV is spread most by people with medium levels of HIV in blood

23.10.2007
People with medium levels of HIV in their blood are likely to contribute most to the spread of the virus, according to new research published today in the journal Proceedings of the National Academy of Sciences.

The study, by researchers from Imperial College London, looked at several groups of HIV-positive people in Europe, the USA and sub-Saharan Africa. It found that those with a high viral load are the most infectious group, but have only limited time to infect others, because they generally progress to AIDS quite quickly.

Viral load - a count of how many viral particles are in a person’s blood – varies hugely between individuals. The higher the viral load, the more infectious a person is but the shorter their life expectancy. As a result, the study found, those with a high viral load do not contribute the most in the long run to the spread of HIV.

Those with a medium viral load are moderately infectious but remain asymptomatic for a period of about six to eight years before progressing to the symptoms of AIDS. This means they can be unaware that they have HIV for a long period of time, during which they can transmit the virus to a number of different sexual partners, and hence contribute most to the epidemic.

Dr Déirdre Hollingsworth, one of the authors of the paper from the Department of Infectious Disease Epidemiology at Imperial College, said: “Just being highly infectious isn’t enough, you have to live long enough to pass the virus on. This long-term view should inform public health policy.”

Despite much recent progress, effective treatment is still not widely available across sub-Saharan Africa, where most infected individuals live. One idea which has been put forward is that treatment should target the most infectious people, with high viral loads, in order to limit transmission. The results of the new study suggest that this would not be an effective plan, as the largest number of new infections is caused by people with medium viral loads.

Those with a medium viral load form the largest, most common group amongst those not receiving treatment. One reason for this could be that the virus has evolved to achieve the optimal balance between infectiousness and virulence, in order to maximise its chances of getting passed on.

Dr William Hanage, another of the authors from the same department at Imperial, commented: “It’s certainly very striking that the viral loads we see most in nature are just right to make sure the virus gets transmitted as much as it can before it kills its host, which is what you would expect from evolution.”

Dr Christophe Fraser, lead author of the study from the Department of Infectious Disease Epidemiology at Imperial College, added: “We now want to see whether the virus has adapted in order to allow it to infect the most people, which seems plausible given the results of our study. This would have serious implications for public health policy, because if it is true then some strategies to prevent transmission could end up making the virus more virulent by accident. While it is too early to sound the alarm, more research to prove or disprove this theory is urgently needed. That is what we are focusing on now.”

Notes for editor
Rated as the world's ninth best university in the 2006 Times Higher Education Supplement University Rankings, Imperial College London is a science-based institution with a reputation for excellence in teaching and research that attracts 11,500 students and 6,000 staff of the highest international quality.

Innovative research at the College explores the interface between science, medicine, engineering and management and delivers practical solutions that improve quality of life and the environment - underpinned by a dynamic enterprise culture.

With 66 Fellows of the Royal Society among our current academic staff and distinguished past members of the College including 14 Nobel Laureates and two Fields Medallists, Imperial's contribution to society has been immense. Inventions and innovations include the discovery of penicillin, the development of holography and the foundations of fibre optics. This commitment to the application of our research for the benefit of all continues today with current focuses including interdisciplinary collaborations to tackle climate change and mathematical modelling to predict and control the spread of infectious diseases.

The College's 100 years of living science will be celebrated throughout 2007 with a range of events to mark the Centenary of the signing of Imperial's founding charter on 8 July 1907.

Laura Gallagher | alfa
Further information:
http://www.imperial.ac.uk

More articles from Health and Medicine:

nachricht Oxygen can wake up dormant bacteria for antibiotic attacks
08.12.2016 | Penn State

nachricht NTU scientists build new ultrasound device using 3-D printing technology
07.12.2016 | Nanyang Technological University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>