Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

HIV is spread most by people with medium levels of HIV in blood

23.10.2007
People with medium levels of HIV in their blood are likely to contribute most to the spread of the virus, according to new research published today in the journal Proceedings of the National Academy of Sciences.

The study, by researchers from Imperial College London, looked at several groups of HIV-positive people in Europe, the USA and sub-Saharan Africa. It found that those with a high viral load are the most infectious group, but have only limited time to infect others, because they generally progress to AIDS quite quickly.

Viral load - a count of how many viral particles are in a person’s blood – varies hugely between individuals. The higher the viral load, the more infectious a person is but the shorter their life expectancy. As a result, the study found, those with a high viral load do not contribute the most in the long run to the spread of HIV.

Those with a medium viral load are moderately infectious but remain asymptomatic for a period of about six to eight years before progressing to the symptoms of AIDS. This means they can be unaware that they have HIV for a long period of time, during which they can transmit the virus to a number of different sexual partners, and hence contribute most to the epidemic.

Dr Déirdre Hollingsworth, one of the authors of the paper from the Department of Infectious Disease Epidemiology at Imperial College, said: “Just being highly infectious isn’t enough, you have to live long enough to pass the virus on. This long-term view should inform public health policy.”

Despite much recent progress, effective treatment is still not widely available across sub-Saharan Africa, where most infected individuals live. One idea which has been put forward is that treatment should target the most infectious people, with high viral loads, in order to limit transmission. The results of the new study suggest that this would not be an effective plan, as the largest number of new infections is caused by people with medium viral loads.

Those with a medium viral load form the largest, most common group amongst those not receiving treatment. One reason for this could be that the virus has evolved to achieve the optimal balance between infectiousness and virulence, in order to maximise its chances of getting passed on.

Dr William Hanage, another of the authors from the same department at Imperial, commented: “It’s certainly very striking that the viral loads we see most in nature are just right to make sure the virus gets transmitted as much as it can before it kills its host, which is what you would expect from evolution.”

Dr Christophe Fraser, lead author of the study from the Department of Infectious Disease Epidemiology at Imperial College, added: “We now want to see whether the virus has adapted in order to allow it to infect the most people, which seems plausible given the results of our study. This would have serious implications for public health policy, because if it is true then some strategies to prevent transmission could end up making the virus more virulent by accident. While it is too early to sound the alarm, more research to prove or disprove this theory is urgently needed. That is what we are focusing on now.”

Notes for editor
Rated as the world's ninth best university in the 2006 Times Higher Education Supplement University Rankings, Imperial College London is a science-based institution with a reputation for excellence in teaching and research that attracts 11,500 students and 6,000 staff of the highest international quality.

Innovative research at the College explores the interface between science, medicine, engineering and management and delivers practical solutions that improve quality of life and the environment - underpinned by a dynamic enterprise culture.

With 66 Fellows of the Royal Society among our current academic staff and distinguished past members of the College including 14 Nobel Laureates and two Fields Medallists, Imperial's contribution to society has been immense. Inventions and innovations include the discovery of penicillin, the development of holography and the foundations of fibre optics. This commitment to the application of our research for the benefit of all continues today with current focuses including interdisciplinary collaborations to tackle climate change and mathematical modelling to predict and control the spread of infectious diseases.

The College's 100 years of living science will be celebrated throughout 2007 with a range of events to mark the Centenary of the signing of Imperial's founding charter on 8 July 1907.

Laura Gallagher | alfa
Further information:
http://www.imperial.ac.uk

More articles from Health and Medicine:

nachricht New vaccine production could improve flu shot accuracy
25.07.2017 | Duke University

nachricht Chances to treat childhood dementia
24.07.2017 | Julius-Maximilians-Universität Würzburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>