Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

What's been causing your knee to ache? Smurfs!

22.10.2007
Researchers believe Smurfs can help them predict who will get arthritis

A new clinical trial seeks to predict who is most likely to experience osteoarthritis, and to test whether an experimental treatment can prevent it altogether. Physicians are setting their sights on people who sustain a knee injury, seeking to understand why nearly half of them will later go on to develop osteoarthritis, a debilitating condition that causes pain and disability in more than 20 million Americans each year.

The work is funded by a special class of National Institutes of Health grants awarded to research programs that show promise of quickly translating basic science discoveries into patient treatments. In this case, initial research has shown that an enzyme which controls the response of cells to growth factors may in fact be a major cause of osteoarthritis. The enzymes are called "Smad Ubiquitination Regulatory Factors,” or, smurfs, but unlike the small, loveable blue cartoon characters, researchers believe that a particular form of these regulatory enzymes, smurf2, might in fact be responsible for America’s leading cause of disability.

“We believe that smurf2 controls whether or not a cartilage cell matures and calcifies into hard bone, which is a very good thing when ‘turned on’ in those areas of the body where we are supposed to have hard bone,” said Randy Rosier, M.D., Ph.D., professor of Orthopaedics and director of Research Translation in Orthopaedics at the University of Rochester Medical Center. “But when smurf2 is active in joint cartilage, it may set off a chain reaction that leads to the steady deterioration of the smooth gliding surface tissue, or cartilage, which comprises the joint surface. When this occurs, the cartilage breaks down and severely damages the weight-bearing surface of a joint. Or, put another way, activation of smurf2 in the joint cartilage appears to significantly contribute to the onset of osteoarthritis.”

Frog Embryos and Cartilage Cells

Over the past decade, smurfs have begun to capture the attention of scientists, after a research team led by Gerald H. Thomsen, Ph.D., at Stony Brook University, identified the enzymes’ critical role in regulating levels of important molecules that help determine which genes are turned on or off in a variety of cells throughout the body. In fact, Rosier first became intrigued with smurfs after reading about how they helped cell differentiation in frog embryos.

“I got to wondering what, if any, control smurfs might have on cartilage cell development and maturation,” he said.

And so, over the course of several years, Rosier and his research team conducted a series of experiments that not only identified the role of smurf2 in bone cell and cartilage signaling, but uncovered its vital link to osteoarthritis.

First, the team compared healthy and diseased cartilage, and discovered that smurf2 was only present in osteoarthritic cartilage. They next demonstrated that smurf2s are stimulated by inflammation, and are expressed in cartilage within a few months following an injury.

Further experiments showed that smurf2 was present in the joints of patients in early-stage arthritis, when patients might begin to experience mild discomfort, but long before other well-known molecular markers of osteoarthritis began to emerge.

“It was at this point that we knew smurf2s are not just a casual bystander in arthritis, but rather, the catalyst that sets off the chain reaction that leads to osteoarthritis,” Rosier said

Rosier is now teaming with sports medicine surgeon Michael Maloney, M.D., to conduct the just underway clinical trial. The team will examine tissue samples from healthy, non-arthritic patients who have sustained an injury to the meniscus to determine the level of smurf2 expression in their cartilage at the beginning of the trial. In addition, a baseline MRI will measure the cartilage at the point of injury, and three years later. If results confirm the team’s earlier findings, the MRIs of patients with high smurf2 expression will show the beginning signs of osteoarthritis as measured by hardening of the cartilage and bone loss.

“Our ultimate goal is to create a simple diagnostic test to determine whether a person with a knee injury has a high level of smurf2s in their cartilage,” Rosier said. “In these cases, physicians can advise the patient to stop high-intensity, wear-and-tear activity, slowing the onset of arthritis and lessening its severity. Eventually, we hope to create an injection that will stop smurf2s’ ability to turn on the calcification and degeneration process in cartilage that leads to osteoarthritis.”

While Rosier admits the development of an injection is a long time off, he believes that physician counseling will do a world of good – and that’s good news for a disease that is estimated to cost the United States about $42 billion a year.

“Think of a 25-year male old who tears his meniscus. Today, after successfully removing the torn meniscus fragment and physical therapy, in most cases, he’s right back to his regular activity level,” Rosier said. “But if his physician can tell him with certainty that he will develop osteoarthritis, he has the opportunity to change his activity level, reducing his risk and severity of osteoarthritis.”

Germaine Reinhardt | EurekAlert!
Further information:
http://www.urmc.rochester.edu

More articles from Health and Medicine:

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht What does congenital Zika syndrome look like?
24.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>