Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Growth Hormone Applied To Diabetes Wound Healing

19.10.2007
Slow or troubled healing processes are one of the many negative outcomes of diabetes and many other human diseases. Diabetes patients not only show deficient tissue healing of sharp wounds but they are also more prone to suffer from chronic wounds, such as ulcers in the lower limbs.

Looking for ways to improve the healing process in diabetes patients, the research group for the Traslacional Investigation of Biomaterials and Tissue Engineering of the “Universidad de Alcalá” managed by Doctor Juan Manuel Bellón and Doctor Julia Buján and working in collaboration with the CSIC have developed an experimental model that releases growth hormone (GH) in a gradual and controlled manner directly over the wounded area. This improves the healing process, with the added advantage that the localised application method avoids the negative side effects that a systemic administration of the hormone could raise.

This therapy has been successfully tested on diabetic lab rats and the results of the study have been published in the Journal of biomedical materials research part b-applied biomaterials. For this study a millimetre thick biomaterial that has been developed by a team of the CSIC was used as support and vector for the growth hormone, and it was applied directly over the wound to be treated. As the material decays, the GH is released at a controlled rate, which aids the regeneration of skin and tissues. The scientists from the “Universidad de Alcalá” responsible for this study have verified that the healing of a sample wound in a normal rat is complete after an average of 15 days. In the case of the subjects affected by diabetes, showing a deficient scaring process, once this hormonal therapy was applied they showed improved tissue repair reaching the same healing as a healthy rat in 30 days. The slow and controlled release of the GH stimulated the growth and differentiation process and abundant collagen secretion, which reduces the healing time and improves the quality of the regenerated tissue.

The research group for the traslacional investigation of biomaterials and tissue engineering is formed by a wide range of specialists, such as surgeons, histologists, biologists, chemists and pharmacists from the Surgery department and from the Medical specialities department. This team has dedicated itself for over two decades to the investigation and research of tissues and means for their repair. This interdisciplinary scientific area is known as “Tissue Engineering”, and aims to repair, substitute, maintain, or improve particular functions of organs and tissues. To achieve this objective the research group works with living cells and their extracellular space, or even create biological substitutes that can be implanted in the body.

Oficina Información Científica | alfa
Further information:
http://www3.interscience.wiley.com/cgi-bin/jhome/96516924?CRETRY=1&SRETRY=0

More articles from Health and Medicine:

nachricht Satellites, airport visibility readings shed light on troops' exposure to air pollution
09.12.2016 | Veterans Affairs Research Communications

nachricht Oxygen can wake up dormant bacteria for antibiotic attacks
08.12.2016 | Penn State

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>