Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Growth Hormone Applied To Diabetes Wound Healing

19.10.2007
Slow or troubled healing processes are one of the many negative outcomes of diabetes and many other human diseases. Diabetes patients not only show deficient tissue healing of sharp wounds but they are also more prone to suffer from chronic wounds, such as ulcers in the lower limbs.

Looking for ways to improve the healing process in diabetes patients, the research group for the Traslacional Investigation of Biomaterials and Tissue Engineering of the “Universidad de Alcalá” managed by Doctor Juan Manuel Bellón and Doctor Julia Buján and working in collaboration with the CSIC have developed an experimental model that releases growth hormone (GH) in a gradual and controlled manner directly over the wounded area. This improves the healing process, with the added advantage that the localised application method avoids the negative side effects that a systemic administration of the hormone could raise.

This therapy has been successfully tested on diabetic lab rats and the results of the study have been published in the Journal of biomedical materials research part b-applied biomaterials. For this study a millimetre thick biomaterial that has been developed by a team of the CSIC was used as support and vector for the growth hormone, and it was applied directly over the wound to be treated. As the material decays, the GH is released at a controlled rate, which aids the regeneration of skin and tissues. The scientists from the “Universidad de Alcalá” responsible for this study have verified that the healing of a sample wound in a normal rat is complete after an average of 15 days. In the case of the subjects affected by diabetes, showing a deficient scaring process, once this hormonal therapy was applied they showed improved tissue repair reaching the same healing as a healthy rat in 30 days. The slow and controlled release of the GH stimulated the growth and differentiation process and abundant collagen secretion, which reduces the healing time and improves the quality of the regenerated tissue.

The research group for the traslacional investigation of biomaterials and tissue engineering is formed by a wide range of specialists, such as surgeons, histologists, biologists, chemists and pharmacists from the Surgery department and from the Medical specialities department. This team has dedicated itself for over two decades to the investigation and research of tissues and means for their repair. This interdisciplinary scientific area is known as “Tissue Engineering”, and aims to repair, substitute, maintain, or improve particular functions of organs and tissues. To achieve this objective the research group works with living cells and their extracellular space, or even create biological substitutes that can be implanted in the body.

Oficina Información Científica | alfa
Further information:
http://www3.interscience.wiley.com/cgi-bin/jhome/96516924?CRETRY=1&SRETRY=0

More articles from Health and Medicine:

nachricht A whole-body approach to understanding chemosensory cells
13.12.2017 | Tokyo Institute of Technology

nachricht Research reveals how diabetes in pregnancy affects baby's heart
13.12.2017 | University of California - Los Angeles Health Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>