Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Insulin's brain impact links drugs and diabetes

18.10.2007
Insulin, long known as an important regulator of blood glucose levels, now has a newly appreciated role in the brain.

Vanderbilt University Medical Center researchers, working with colleagues in Texas, have found that insulin levels affect the brain’s dopamine systems, which are involved in drug addiction and many neuropsychiatric conditions.

In addition to suggesting potential new targets for treating drug abuse, the findings raise questions as to whether improper control of insulin levels – as in diabetes – may impact risk for attention deficit hyperactivity disorder (ADHD) or influence the effectiveness of current ADHD medications.

The study, led by Aurelio Galli, Ph.D., in the Center for Molecular Neuroscience and Calum Avison, Ph.D., in the Institute of Imaging Science (VUIIS), appears online this week in the Public Library of Science Biology (PLoS Biology).

The psychostimulant drugs amphetamine and cocaine, as well as related medications for ADHD, block the reuptake of the neurotransmitter dopamine by dopamine transporters (DATs) and increase the level of dopamine signaling. Some of these compounds, including amphetamine, also cause a massive outpouring of dopamine through DATs.

The resulting surge of synaptic dopamine alters attention, increases motor activity and plays an important role in the addictive properties of psychostimulants.

But the link between insulin status and dopaminergic function is not readily apparent.

“In the 1970s, there were articles showing that, in animals with type 1 diabetes, psychostimulants like amphetamine would not increase locomotor behavior,” said Galli, associate professor of Molecular Physiology and Biophysics. “We didn’t have a clear understanding of why that was happening.”

This sparked Galli and colleagues to investigate the link between insulin signaling and amphetamine action.

Using a rat model of type 1 – or juvenile – diabetes in which insulin levels are depleted, Galli’s group assessed the function of the dopaminergic pathway in the striatum, an area of the brain rich in dopamine.

In the absence of insulin, amphetamine-induced dopamine signaling was disrupted, they found. Dopamine release in the striatum was severely impaired and expression of DAT on the surface of the nerve terminal – where it normally acts to inactivate dopamine – was significantly reduced.

The lack of the protein on the plasma membrane prevents the amphetamine-induced increase in extracellular dopamine, and in turn, amphetamine fails to activate the dopamine pathways that stimulate reward, attention and movement, Galli noted.

The researchers then restored insulin by pulsing the hormone back into the brain of the diabetic animals and found that the system returns to normal, indicating that the lack of insulin in the striatum directly affected amphetamine action.

To connect the physiological findings to activity in the intact brain, collaborators in the VUIIS, led by Avison, developed a probe for brain DAT activity using functional magnetic resonance imaging (fMRI).

“You can do molecular dissection in very well defined model systems and break the system down into its constituents,” said Avison, professor of Radiology and Radiological Sciences, and professor of Pharmacology. “But the question is: how does that relate to the intact brain? What’s the relevance to overall functioning in the intact system?”

Working with Galli and Avison, Jason Williams, Ph.D., used fMRI to demonstrate that in normal, healthy rats with plenty of insulin, amphetamine increased neural activity in the striatum. But in diabetic animals, activity in the striatum was suppressed.

“This finding is in vivo evidence that, in the intact diabetic rat, loss of insulin has compromised DAT trafficking to the plasma membrane,” Avison said. “These experiments show that there is likely a strong interplay between these important dopamine neurotransmitter systems and insulin signaling mechanisms, which we know are altered in diabetes”

The results are some of the first to link insulin status and dopaminergic brain function and hold several implications for human health and disease.

“This is really the first mechanistic connection in vivo between diabetes and amphetamine action,” Galli said. “This offers a completely new perspective on the influence of this disease (diabetes) on brain function, as well as diseases with altered dopamine signaling, such as schizophrenia and ADHD.”

The findings suggest that ADHD risk may have an insulin-dependent component and that control of insulin levels and response to the hormone may be an important determinant of amphetamine efficacy in patients with ADHD, Galli noted.

“We have described a novel mechanism by which diabetes may affect brain function.”

Melissa Marino | EurekAlert!
Further information:
http://www.vanderbilt.edu

More articles from Health and Medicine:

nachricht Chronic stress induces fatal organ dysfunctions via a new neural circuit
21.08.2017 | Hokkaido University

nachricht New malaria analysis method reveals disease severity in minutes
14.08.2017 | University of British Columbia

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>