Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research on structure of bones raises questions for treatment of osteoporosis

17.10.2007
Researchers have discovered that the structure of human bones is vastly different than previously believed – findings which will have implications for how some debilitating bone disorders are treated.

Researchers from the University of Cambridge, the Animal Health Trust in Newmarket, and the BAM Federal Institute of Materials Research and Testing, Berlin, have discovered that the characteristic toughness and stiffness of bone is predominantly due to the presence of specialized sugars, not proteins, as had been previous believed. Their findings could have sweeping impacts on treatments for osteoporosis and other bone disorders.

Scientists have long held the view that collagen and other proteins were the key molecules responsible for stabilizing normal bone structure. That belief has been the basis for some existing medications for bone disorders and bone replacement materials. At the same time, researchers paid little attention to the roles of sugars (carbohydrates) in the complex process of bone growth.

For this research, funded by the Biotechnology and Biological Sciences Research Council (BBSRC), the UK and Berlin teams studied mineralization in horse bones using an analysis tool called nuclear magnetic resonance (NMR). They found that sugars, particularly proteoglycans (PGs) and glycosaminoglycans (GAGs), appear to play a role which is as important as proteins in controlling bone mineralization - the process by which newly-formed bone is hardened with minerals such as calcium phosphate.

Osteoporosis is a chronic and widespread disease in which mineral formation is disturbed, leading to brittle bones, pain, and increased fractures. Osteoarthritis, a hallmark of which is joint cartilage and GAG depletion, is also accompanied by abnormal bone mineralization. Both of these diseases can be debilitating, often crippling, to older people – a problem which will only intensify as our population ages. Among the young, especially sportsmen and women, bone and joint injuries prove the most intractable and are also the ones most likely to develop into afflictions (such as osteoarthritis) later in life.

Dr David Reid, from the Duer Group, Department of Chemistry,at the University of Cambridge, who played a significant part in the research, said, “We believe our findings will alter some fundamental preconceptions of bone biology. On a practical level they unveil novel targets for drug discovery for bone and joint diseases, new biomarkers for diagnosis, and new strategies for developing synthetic materials that could be used in orthopaedics.

“They may also strengthen the rationale for the current popularity of over-the-counter joint and bone pain remedies such as glucosamine and chondroitin, which are based on GAG sugar molecules.”

Genevieve Maul | EurekAlert!
Further information:
http://www.cam.ac.uk

More articles from Health and Medicine:

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

nachricht A promising target for kidney fibrosis
21.04.2017 | Brigham and Women's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>