Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How does the Opioid System Control Pain, Reward and Addictive Behaviors?

15.10.2007
Brigitte Kieffer, Ph.D, Institut de Génétique et de Biologie Moléculaire et Cellulaire Illkirch, France presents exciting new methods that now allow to understand how molecules act in the brain and control behaviour.

The opioid system controls pain, reward and addictive behaviors. Opioids exert their pharmacological actions through three opioid receptors, µ, d and ? whose genes have been cloned (Oprm, Oprd1 and Oprk1, respectively). Opioid receptors in the brain are activated by a family of endogenous peptides like enkephalins, dynorphins and endorphin, which are released by neurons. Opioid receptors can also be activated exogenously by alkaloid opiates, the prototype of which is morphine, which remains the most valuable painkiller in contemporary medicine.

By acting at opioid receptors, opiates such as morphine or heroin (a close chemically synthesized derivative) are extremely potent pain-killers, but are also highly addictive drugs.

To understand how molecules act in the brain and control behavior one can manipulate genes encoding these molecules in complex organisms, such as the mouse, and explore the consequences of these targeted genetic manipulations on animal responses in vivo.

Today, genetically modified mouse models represent a state-of-the art approach towards understanding brain function.

The direct comparison of mice lacking each of the three opioid-receptor genes reveals that µ- and d-opioid receptors act oppositely in regulating emotional reactivity. This highlights a novel aspect of µ- and d-receptor interactions, which contrasts with the former commonly accepted idea that activation of µ- and d-receptors produces similar biological effects (Traynor & Elliot, 1993).

µ-opioid-receptor
The finding that morphine’s analgesic and addictive properties are abolished in mice lacking the µ-opioid receptor has unambiguously demonstrated that µ-receptors mediate both the therapeutic and the adverse activities of this compound (Matthes 1996). Importantly, a series of studies has shown that the reinforcing properties of alcohol, cannabinoids, and nicotine — each of which acts at a different receptor — are also strongly diminished in these mutant mice. The genetic approach therefore highlights µ-receptors as convergent molecular switches, which mediate reinforcement following direct (morphine) or indirect activation (non-opioid drugs of abuse; see Contet 2004).

Endogenous opioid binding to µ-receptors is furthermore hypothesized to mediate natural rewards and has been proposed to be the basis of infant attachment behavior (Moles 2004).

Mice lacking the µ-receptor gene show
• a loss of morphine-induced analgesia, reward, and dependence
• increased sensitivity to painful stimuli
• reduced reward to non-opioid drugs of abuse and
• altered emotional responses
d-opioid-receptor
Analysis showed an unexpected alteration of emotional reactivity in the d-receptor knockout mice (Filliol et al 2000). The mutant mice demonstrated increased levels of anxiety, and a depressive-like behavior – these findings have important implications on the field of opioid research und uncover the therapeutic potential for d-agonists in the treatment of mood disorders.

The most recent findings are the direct visualization of an opioid receptor in the mouse brain. The combination of fluorescent genetically encoded proteins (green fluorescent protein GFP from the jellyfish (Aequora victoria) with mouse engineering provides a fascinating means to study dynamic biological processes in mammals. Fluorescent genetically encoded proteins are unique high-contrast, noninvasive molecular markers for live imaging in complex organisms and provide the exploration of the receptor localization and function in vivo.

Scherrer et al. have knocked enhanced green fluorescent protein (EGFP) into the opioid d receptor gene and produced mice expressing a functional DOR-EGFP C-terminal fusion in place of the native DOR. After manipulation of the mouse genome mutant animals express a fluorescent functional version of the d-receptor in place of the native receptor (knock-in mouse) (Scherrer et al. 2006). This is the first example of a G protein coupled receptor directly visible in vivo.

G protein-coupled receptors (GPCRs) are the largest family of membrane receptors and are therapeutically essential, representing targets for 50% of marketed drugs (Scherrer et al., 2006). µ-, d- and ?-opioid-receptors are GPCRs of the nervous system.

The DOR-EGFP mouse provides a unique approach to explore receptor localization and function in vivo. GPCR represent the largest and most versatile family of membrane receptors, and each member has a specific cellular life cycle. The EGFP-knocking approach could be extended to other GPCRs, particulary in the case of orphan receptors for which in vivo pharmacology is still in its infancy (Scherrer et al., 2006).

Altogether there have been

(i) identified genes encoding receptors from a complex neuromodulatory system,
(ii) developed gene targeting approaches to elucidate the function of these genes in the mammalian brain;
It was found that µ-receptors control reward, while d-receptors regulate emotional responses and

for the first time a genetic manipulation was pioneered to achieve functional imaging of opioid receptors in vivo.

Conclusion

•The opioid system consists of three G protein-coupled receptors, µ-, d-, and ?, which are stimulated by a family of endogenous opioid peptides.

•µ-opioid receptors are a key molecular switch triggering brain reward systems and potentially initiating addictive behaviors. The lack of µ-receptors abolishes the analgesic effect of morphine, as well as place-preference activity and physical dependence. This receptor therefore mediates therapeutic (analgesia) and adverse (addiction) activities of morphine, suggesting that further development of morphine-like compounds may necessarily lead to addictive analgesics.

•Studies of mutant mice also suggest a role for µ-opioid receptors in diseases characterized by deficits in attachment behavior, such as autism or reactive attachment disorder. The data also highlight mice lacking µ-opioid receptors as a useful animal model to evaluate the consequences of deficits in the affiliative system during development and adulthood.

•The rewarding properties of both opioid, as well as non-opioid drugs of abuse (cannabinoids, ethanol and nicotine, natural reinforcers) are abolished in the µ-receptor knockout mice. Blocking the µ-receptor may build a valuable approach for the treatment for drug abuse.

•Beyond the rewarding aspect of drug consumption, pharmacological studies have also suggested a role for this receptor in the maintenance of drug use, as well as craving and relapse. As a consequence, expanding our understanding of µ-receptor function should greatly help to further our knowledge of the general mechanisms that underlie addiction.

•Opiate addicts, who mainly abuse the µ-opioid agonist heroin, present a high incidence of depressive disorders that seem to contribute to the maintenance of the addictive state. Also, the treatment of chronic pain states frequently includes antidepressant therapy. Therefore, in addition to their potential analgesic activity, d-agonists may be useful in improving emotional states and, more generally, may be considered in the future as an alternative therapy to alleviate affective disorders.

References

Traynor JR, Elliott J. delta-Opioid receptor subtypes and cross-talk with mu-receptors. Trends Pharmacol Sci 1993;14(3):84-6

Matthes HW, Maldonado R, Simonin F, Valverde O, Slowe S, Kitchen I, Befort K, Dierich A, Le Meur M, Dolle P, Tzavara E, Hanoune J, Roques BP, Kiefer BL. Loss of morphine-induced analgesia, reward effect and withdrawal symptoms in mice lacking the mu-opioid-receptor gene. Nature 1996;383(6603):819-23

Filliol D, Ghozland S, Chluba J, Martin M, Matthes HW, Simonin F, Befort K, Gaveriaux-Ruff C, Dierich A, LeMeur M, Valverde O, Maldonado R, Kiefer BL. Mice deficient for delta- and mu-opioid receptors exhibit opposing alterations of emotional responses. Nat Genet 2000;25(2):195-200

Moles A, Kiefer BL, D'Amato FR. Deficit in attachment behavior in mice lacking the mu-opioid receptor gene. Science 2004;304(5679):1983-6

Scherrer G, Tryoen-Toth P, Filliol D, Matifas A, Laustriat D, Cao YQ, Basbaum AI, Dierich A, Vonesh JL, Gaveriaux-Ruff C, Kiefer BL. Knockin mice expressing fluorescent delta-opioid receptors uncover G protein-coupled receptor dynamics in vivo. Proc Natl Acad Sci USA 2006;103(25):9691-6

Contet CS, Kieffer BL and Befort K. Mu opioid receptor: a gateway to drug addiction. Curr Op Neurobiol 2004;14:1-9

Maria Vrijmoed-de Vries | alfa
Further information:
http://www.ecnp.eu

More articles from Health and Medicine:

nachricht PET imaging tracks Zika virus infection, disease progression in mouse model
20.09.2017 | US Army Medical Research Institute of Infectious Diseases

nachricht 'Exciting' discovery on path to develop new type of vaccine to treat global viruses
18.09.2017 | University of Southampton

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>