Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How does the Opioid System Control Pain, Reward and Addictive Behaviors?

15.10.2007
Brigitte Kieffer, Ph.D, Institut de Génétique et de Biologie Moléculaire et Cellulaire Illkirch, France presents exciting new methods that now allow to understand how molecules act in the brain and control behaviour.

The opioid system controls pain, reward and addictive behaviors. Opioids exert their pharmacological actions through three opioid receptors, µ, d and ? whose genes have been cloned (Oprm, Oprd1 and Oprk1, respectively). Opioid receptors in the brain are activated by a family of endogenous peptides like enkephalins, dynorphins and endorphin, which are released by neurons. Opioid receptors can also be activated exogenously by alkaloid opiates, the prototype of which is morphine, which remains the most valuable painkiller in contemporary medicine.

By acting at opioid receptors, opiates such as morphine or heroin (a close chemically synthesized derivative) are extremely potent pain-killers, but are also highly addictive drugs.

To understand how molecules act in the brain and control behavior one can manipulate genes encoding these molecules in complex organisms, such as the mouse, and explore the consequences of these targeted genetic manipulations on animal responses in vivo.

Today, genetically modified mouse models represent a state-of-the art approach towards understanding brain function.

The direct comparison of mice lacking each of the three opioid-receptor genes reveals that µ- and d-opioid receptors act oppositely in regulating emotional reactivity. This highlights a novel aspect of µ- and d-receptor interactions, which contrasts with the former commonly accepted idea that activation of µ- and d-receptors produces similar biological effects (Traynor & Elliot, 1993).

µ-opioid-receptor
The finding that morphine’s analgesic and addictive properties are abolished in mice lacking the µ-opioid receptor has unambiguously demonstrated that µ-receptors mediate both the therapeutic and the adverse activities of this compound (Matthes 1996). Importantly, a series of studies has shown that the reinforcing properties of alcohol, cannabinoids, and nicotine — each of which acts at a different receptor — are also strongly diminished in these mutant mice. The genetic approach therefore highlights µ-receptors as convergent molecular switches, which mediate reinforcement following direct (morphine) or indirect activation (non-opioid drugs of abuse; see Contet 2004).

Endogenous opioid binding to µ-receptors is furthermore hypothesized to mediate natural rewards and has been proposed to be the basis of infant attachment behavior (Moles 2004).

Mice lacking the µ-receptor gene show
• a loss of morphine-induced analgesia, reward, and dependence
• increased sensitivity to painful stimuli
• reduced reward to non-opioid drugs of abuse and
• altered emotional responses
d-opioid-receptor
Analysis showed an unexpected alteration of emotional reactivity in the d-receptor knockout mice (Filliol et al 2000). The mutant mice demonstrated increased levels of anxiety, and a depressive-like behavior – these findings have important implications on the field of opioid research und uncover the therapeutic potential for d-agonists in the treatment of mood disorders.

The most recent findings are the direct visualization of an opioid receptor in the mouse brain. The combination of fluorescent genetically encoded proteins (green fluorescent protein GFP from the jellyfish (Aequora victoria) with mouse engineering provides a fascinating means to study dynamic biological processes in mammals. Fluorescent genetically encoded proteins are unique high-contrast, noninvasive molecular markers for live imaging in complex organisms and provide the exploration of the receptor localization and function in vivo.

Scherrer et al. have knocked enhanced green fluorescent protein (EGFP) into the opioid d receptor gene and produced mice expressing a functional DOR-EGFP C-terminal fusion in place of the native DOR. After manipulation of the mouse genome mutant animals express a fluorescent functional version of the d-receptor in place of the native receptor (knock-in mouse) (Scherrer et al. 2006). This is the first example of a G protein coupled receptor directly visible in vivo.

G protein-coupled receptors (GPCRs) are the largest family of membrane receptors and are therapeutically essential, representing targets for 50% of marketed drugs (Scherrer et al., 2006). µ-, d- and ?-opioid-receptors are GPCRs of the nervous system.

The DOR-EGFP mouse provides a unique approach to explore receptor localization and function in vivo. GPCR represent the largest and most versatile family of membrane receptors, and each member has a specific cellular life cycle. The EGFP-knocking approach could be extended to other GPCRs, particulary in the case of orphan receptors for which in vivo pharmacology is still in its infancy (Scherrer et al., 2006).

Altogether there have been

(i) identified genes encoding receptors from a complex neuromodulatory system,
(ii) developed gene targeting approaches to elucidate the function of these genes in the mammalian brain;
It was found that µ-receptors control reward, while d-receptors regulate emotional responses and

for the first time a genetic manipulation was pioneered to achieve functional imaging of opioid receptors in vivo.

Conclusion

•The opioid system consists of three G protein-coupled receptors, µ-, d-, and ?, which are stimulated by a family of endogenous opioid peptides.

•µ-opioid receptors are a key molecular switch triggering brain reward systems and potentially initiating addictive behaviors. The lack of µ-receptors abolishes the analgesic effect of morphine, as well as place-preference activity and physical dependence. This receptor therefore mediates therapeutic (analgesia) and adverse (addiction) activities of morphine, suggesting that further development of morphine-like compounds may necessarily lead to addictive analgesics.

•Studies of mutant mice also suggest a role for µ-opioid receptors in diseases characterized by deficits in attachment behavior, such as autism or reactive attachment disorder. The data also highlight mice lacking µ-opioid receptors as a useful animal model to evaluate the consequences of deficits in the affiliative system during development and adulthood.

•The rewarding properties of both opioid, as well as non-opioid drugs of abuse (cannabinoids, ethanol and nicotine, natural reinforcers) are abolished in the µ-receptor knockout mice. Blocking the µ-receptor may build a valuable approach for the treatment for drug abuse.

•Beyond the rewarding aspect of drug consumption, pharmacological studies have also suggested a role for this receptor in the maintenance of drug use, as well as craving and relapse. As a consequence, expanding our understanding of µ-receptor function should greatly help to further our knowledge of the general mechanisms that underlie addiction.

•Opiate addicts, who mainly abuse the µ-opioid agonist heroin, present a high incidence of depressive disorders that seem to contribute to the maintenance of the addictive state. Also, the treatment of chronic pain states frequently includes antidepressant therapy. Therefore, in addition to their potential analgesic activity, d-agonists may be useful in improving emotional states and, more generally, may be considered in the future as an alternative therapy to alleviate affective disorders.

References

Traynor JR, Elliott J. delta-Opioid receptor subtypes and cross-talk with mu-receptors. Trends Pharmacol Sci 1993;14(3):84-6

Matthes HW, Maldonado R, Simonin F, Valverde O, Slowe S, Kitchen I, Befort K, Dierich A, Le Meur M, Dolle P, Tzavara E, Hanoune J, Roques BP, Kiefer BL. Loss of morphine-induced analgesia, reward effect and withdrawal symptoms in mice lacking the mu-opioid-receptor gene. Nature 1996;383(6603):819-23

Filliol D, Ghozland S, Chluba J, Martin M, Matthes HW, Simonin F, Befort K, Gaveriaux-Ruff C, Dierich A, LeMeur M, Valverde O, Maldonado R, Kiefer BL. Mice deficient for delta- and mu-opioid receptors exhibit opposing alterations of emotional responses. Nat Genet 2000;25(2):195-200

Moles A, Kiefer BL, D'Amato FR. Deficit in attachment behavior in mice lacking the mu-opioid receptor gene. Science 2004;304(5679):1983-6

Scherrer G, Tryoen-Toth P, Filliol D, Matifas A, Laustriat D, Cao YQ, Basbaum AI, Dierich A, Vonesh JL, Gaveriaux-Ruff C, Kiefer BL. Knockin mice expressing fluorescent delta-opioid receptors uncover G protein-coupled receptor dynamics in vivo. Proc Natl Acad Sci USA 2006;103(25):9691-6

Contet CS, Kieffer BL and Befort K. Mu opioid receptor: a gateway to drug addiction. Curr Op Neurobiol 2004;14:1-9

Maria Vrijmoed-de Vries | alfa
Further information:
http://www.ecnp.eu

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>