Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MIT finds new hearing mechanism

11.10.2007
Discovery could lead to improved hearing aids

MIT researchers have discovered a hearing mechanism that fundamentally changes the current understanding of inner ear function. This new mechanism could help explain the ear's remarkable ability to sense and discriminate sounds. Its discovery could eventually lead to improved systems for restoring hearing.

The research is described in the advance online issue of the Proceedings of the National Academy of Sciences the week of October 8.

MIT Professor Dennis M. Freeman, working with graduate student Roozbeh Ghaffari and research scientist Alexander J. Aranyosi, found that the tectorial membrane, a gelatinous structure inside the cochlea of the ear, is much more important to hearing than previously thought. It can selectively pick up and transmit energy to different parts of the cochlea via a kind of wave that is different from that commonly associated with hearing.

Ghaffari, the lead author of the paper, is in the Harvard-MIT Division of Health Sciences and Technology, as is Freeman. All three researchers are in MIT's Research Laboratory of Electronics. Freeman is also in MIT's Department of Electrical Engineering and Computer Science and the Massachusetts Eye and Ear Infirmary.

It has been known for over half a century that inside the cochlea sound waves are translated into up-and-down waves that travel along a structure called the basilar membrane. But the team has now found that a different kind of wave, a traveling wave that moves from side to side, can also carry sound energy. This wave moves along the tectorial membrane, which is situated directly above the sensory hair cells that transmit sounds to the brain. This second wave mechanism is poised to play a crucial role in delivering sound signals to these hair cells.

In short, the ear can mechanically translate sounds into two different kinds of wave motion at once. These waves can interact to excite the hair cells and enhance their sensitivity, "which may help explain how we hear sounds as quiet as whispers," says Aranyosi. The interactions between these two wave mechanisms may be a key part of how we are able to hear with such fidelity - for example, knowing when a single instrument in an orchestra is out of tune.

"We know the ear is enormously sensitive" in its ability to discriminate between different kinds of sound, Freeman says. "We don't know the mechanism that lets it do that." The new work has revealed "a whole new mechanism that nobody had thought of. It's really a very different way of looking at things."

The tectorial membrane is difficult to study because it is small (the entire length could fit inside a one-inch piece of human hair), fragile (it is 97 percent water, with a consistency similar to that of a jellyfish), and nearly transparent. In addition, sound vibrations cause nanometer-scale displacements of cochlear structures at audio frequencies. "We had to develop an entirely new class of measurement tools for the nano-scale regime," Ghaffari says.

The team learned about the new wave mechanism by suspending an isolated piece of tectorial membrane between two supports, one fixed and one moveable. They launched waves at audio frequencies along the membrane and watched how it responded by using a stroboscopic imaging system developed in Freeman's lab. That system can measure nanometer-scale displacements at frequencies up to a million cycles per second.

The team's discovery has implications for how we model cochlear mechanisms. "In the long run, this could affect the design of hearing aids and cochlear implants," says Ghaffari. The research also has implications for inherited forms of hearing loss that affect the tectorial membrane. Previous measurements of cochlear function in mouse models of these diseases "are consistent with disruptions of this second wave," Aranyosi adds.

Because the tectorial membrane is so tiny and so fragile, people "tend to think of it as something that's wimpy and not important," Freeman says. "Well, it's not wimpy at all." The new discovery "that it can transport energy throughout the cochlea is very significant, and it's not something that's intuitive."

This research was funded by the National Institutes of Health.

Written by David Chandler, MIT News Office

Elizabeth A. Thomson | MIT News Office
Further information:
http://web.mit.edu/newsoffice/www

More articles from Health and Medicine:

nachricht On track to heal leukaemia
18.01.2017 | Universitätsspital Bern

nachricht Penn vet research identifies new target for taming Ebola
12.01.2017 | University of Pennsylvania

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>