Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene may hold key to future cancer hope

09.10.2007
Scientists may have discovered a new way of killing tumours in what they hope could one day lead to alternative forms of cancer treatments.

The University of Manchester research has identified a key gene that appears to play a critical role in the normal process of cell division.

Cells divide creating new cells as part of the body’s natural growth, renewal and healing processes but cancer results when cells divide in an uncontrolled way.

What the Manchester team has discovered is that a protein in our cells called ‘Bub 1’ is essential for normal cell division to take place; if the gene that generates Bub 1 is ‘switched off’ then the cells are unable to divide successfully.

“Bub 1 is an enzyme that controls several processes required for cell division to occur,” said Dr Stephen Taylor, who led the research in the Faculty of Life Sciences.

“We have shown that mouse embryos lacking the Bub 1 gene are unable to develop. Older cell types also failed to divide when the gene is switched off, while male mice lacking Bub 1 became infertile as their sperm cells died.”

In fact, deactivating Bub 1 had such a profound effect on cell division at all stages of a cell’s life – known as the ‘cell cycle’ – that the team is hopeful it will have a similar effect on cancer cells.

“Before cells can divide they have to duplicate and then distribute their genetic material so that the two ‘daughter’ cells receive all the genetic information for further growth and development,” said Dr Taylor, whose work is funded by the charity Cancer Research UK.

“The distribution phase has to be done with a high degree of accuracy – just one chromosome segregated incorrectly, for instance, leads to Down’s syndrome – so the cell has a surveillance mechanism which acts as a brake to delay chromosome segregation until accuracy has been guaranteed.”

An important part of this intricate surveillance system is Bub 1. The team found that when the gene is switched off the surveillance mechanism fails and accuracy is lost, resulting in cell death.

Now that scientists understand the precise role of Bub 1 in normal cell division, as well as what goes wrong when the gene is missing, they plan to test their theory on cancer cells.

“Unlike some other genes that become mutated in cancer cells, the Bub 1 gene appears normal indicating that it behaves in exactly the same way in cancer cells as it does in healthy cells.

“If this is the case, then we can be confident that switching it off will stop cancer cells proliferating too. And while our normal cells don’t divide that often, cancer cells divide more frequently, so hopefully by targeting Bub1 we will selectively kill cancer cells.”

Equally exciting, says Dr Taylor, is the fact that drugs are already being developed that are able to block the actions of Bub 1-type enzymes, known as ‘protein kinases’; such kinase blockers or ‘inhibitors’ are already providing a whole new approach to tackling cancer and Bub1 inhibitors may be another weapon in the oncologist's arsenal.

The research, which began in 1999, is published in the journal Developmental Cell on Tuesday, October 9.

Aeron Haworth | alfa
Further information:
http://www.manchester.ac.uk

More articles from Health and Medicine:

nachricht Electrical 'switch' in brain's capillary network monitors activity and controls blood flow
27.03.2017 | Larner College of Medicine at the University of Vermont

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>