Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene may hold key to future cancer hope

09.10.2007
Scientists may have discovered a new way of killing tumours in what they hope could one day lead to alternative forms of cancer treatments.

The University of Manchester research has identified a key gene that appears to play a critical role in the normal process of cell division.

Cells divide creating new cells as part of the body’s natural growth, renewal and healing processes but cancer results when cells divide in an uncontrolled way.

What the Manchester team has discovered is that a protein in our cells called ‘Bub 1’ is essential for normal cell division to take place; if the gene that generates Bub 1 is ‘switched off’ then the cells are unable to divide successfully.

“Bub 1 is an enzyme that controls several processes required for cell division to occur,” said Dr Stephen Taylor, who led the research in the Faculty of Life Sciences.

“We have shown that mouse embryos lacking the Bub 1 gene are unable to develop. Older cell types also failed to divide when the gene is switched off, while male mice lacking Bub 1 became infertile as their sperm cells died.”

In fact, deactivating Bub 1 had such a profound effect on cell division at all stages of a cell’s life – known as the ‘cell cycle’ – that the team is hopeful it will have a similar effect on cancer cells.

“Before cells can divide they have to duplicate and then distribute their genetic material so that the two ‘daughter’ cells receive all the genetic information for further growth and development,” said Dr Taylor, whose work is funded by the charity Cancer Research UK.

“The distribution phase has to be done with a high degree of accuracy – just one chromosome segregated incorrectly, for instance, leads to Down’s syndrome – so the cell has a surveillance mechanism which acts as a brake to delay chromosome segregation until accuracy has been guaranteed.”

An important part of this intricate surveillance system is Bub 1. The team found that when the gene is switched off the surveillance mechanism fails and accuracy is lost, resulting in cell death.

Now that scientists understand the precise role of Bub 1 in normal cell division, as well as what goes wrong when the gene is missing, they plan to test their theory on cancer cells.

“Unlike some other genes that become mutated in cancer cells, the Bub 1 gene appears normal indicating that it behaves in exactly the same way in cancer cells as it does in healthy cells.

“If this is the case, then we can be confident that switching it off will stop cancer cells proliferating too. And while our normal cells don’t divide that often, cancer cells divide more frequently, so hopefully by targeting Bub1 we will selectively kill cancer cells.”

Equally exciting, says Dr Taylor, is the fact that drugs are already being developed that are able to block the actions of Bub 1-type enzymes, known as ‘protein kinases’; such kinase blockers or ‘inhibitors’ are already providing a whole new approach to tackling cancer and Bub1 inhibitors may be another weapon in the oncologist's arsenal.

The research, which began in 1999, is published in the journal Developmental Cell on Tuesday, October 9.

Aeron Haworth | alfa
Further information:
http://www.manchester.ac.uk

More articles from Health and Medicine:

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

nachricht Better equipped in the fight against lung cancer
16.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>