Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New strategies with greater antitumorous efficacy

04.10.2007
One of the biggest problems in the current treatment of cancer is that the agents that are efficacious in the destruction of tumorous cells are, at the same time, extremely toxic for the rest of the healthy cells and tissues of the patient. To address the problem the University of the Basque Country (UPV/EHU) is seeking more specific treatments and studying the differences between tumorous cells and healthy ones.

A research team from the Faculty of Medicine and Odontology is working on identifying pharmacological agents that increase the therapeutic benefit of combinations of chemo-, immune and radiotherapy agents in the treatment of cancer ailments.

The aim of the research team was to identify compounds that act on the metabolic pathways and processes that take place differently depending whether a diseased tissue of a patient or healthy tissue is involved; in this way selective action can be undertaken, increasing the sensitivity of treatments for diseased tissues without damaging healthy cells or tissues at the same time.

With this general goal the researchers tested various biomodulators on a number of different tumorous modules such as melanoma, sarcoma and cancer of the colon. On the one hand, they studied agents that modulated levels of glutathione (GSH) – key element in the biological processes of cells, both healthy and tumorous. Tumorous cells with high GSH levels have a greater growth and metastatic capacity and a lower sensitivity to antitumorous agents. On the other hand, one of the features of tumorous cells is that they lose their normal level of differentiation and, instead of exercising a determined function, they start to proliferate and generate a greater quantity of tumorous cells. This is why the researchers have also used agents that induce differentiation, such as are retinoids.

More selective therapies

Both groups of modulators have been associated with classic agents used in antitumorous therapies and have seen the benefits arising therefrom. They have shown that the GSH level modulating agent - oxothiazolidine-carboxylate (OTZ) increases the antitumorous effect in antitumorous cells and, at the same time, protects healthy tissue. In this way the therapeutic benefit can be increased. Nevertheless, when another GSH-level modulating agent is combined with antitumorous agents, for example, buthionine-sulphoxamide (BSO), the researchers observed that the effect of the standard drug was increased but that an increase in damage to healthy tissue also took place.

Also, with the aim of returning the cells to a more differentiated state, closer to healthy cell behaviour, this research team is investigating the use of retinoids in combination with standard agents. The response of tumorous cells to retinoids depends on the degree of differentiation of these cells. In general, highly differentiated tumorous cells are more sensitive to retinoids than moderately differentiated ones are. These latter, in response to retinoids, may trigger defence mechanisms that augment GSH levels and, in this way, increase metastatic capacity.

This is an interesting point, given that to date this different capacity that can have different cell lines within the same tumorous type has not been described. What the UPV-EHU researchers have done is to link both lines of modulation -GSH modulation and that of the differentiation inductors. They have found a link between the two – the induction of differentiation with retinoids also modulates the GSH levels of tumorous cells.

Researchers are analysing the model for the concentration and administering of the agents used, given that, in the biological modulation, both elements are found to be fundamental for the success of the treatment. The concentration is not a matter of the more the better, but the optimum response involves a specific concentration, because too little or too much may produce opposite or undesired effects.

Following in vitro and in vivo trials by researchers at the laboratories of the UPV/EHU, one of the goals of the research team is to transfer the information obtained to more easily managed systems for research and for clinical trials.

Irati Kortabitarte | alfa
Further information:
http://www.basqueresearch.com/berria_irakurri.asp?Berri_Kod=1459&hizk=I

More articles from Health and Medicine:

nachricht Light beam replaces blood test during heart surgery
28.02.2017 | University of Central Florida

nachricht Cells adapt ultra-rapidly to zero gravity
28.02.2017 | Universität Zürich

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Cells adapt ultra-rapidly to zero gravity

28.02.2017 | Health and Medicine

An Atom Trap for Water Dating

28.02.2017 | Earth Sciences

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>