Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Algorithms to reanimate the heart

04.10.2007
When an adult suffers a cardiorespiratory arrest the rapid application of an electrical discharge with a defibrillator can avoid sudden death in many cases.

Nevertheless, defibrillation also has its impediment or enemy: time. For every minute that passes from the moment of the attack, the possibilities of survival drop by 10%. This is why, in order to avoid avoidable deaths, more and more easy-to-handle, automatic defibrillators are being designed, sold and installed.

Automatic defibrillators or AEDs (Automatic External Defibrillators) have been around now for some ten years. The main elements of these devices are based on algorithms that help undertake a study and diagnosis of the electrical signals from the heart. The defibrillator reads the patient’s heartbeat and carries out a continuous report of the state of the organ. Once this analysis is completed, it communicates whether or not an electric discharge is necessary, i.e. it will tell if, on applying electro-treatment, the heart will recover its usual pace or not.

In fact, this last was the starting point for researchers at the Department of Electronics and Telecommunications at the Higher Technical Engineering School in Bilbao (the University of the Basque Country - UPV-EHU); i.e. drawing up algorithms for defibrillators designed for adults. In this research, however, they are investigating algorithms that are reliably applicable for children and overcoming that obstacle of time.

AEDs for children

The use of automatic defibrillators for adults is quite widespread. The heartbeat of a child under 8, however, is quite different from that of an adult. What happens when a child suffers a cardiorespiratory arrest? The use of such devices with children has been authorised for some two years now, and the UPV-EHU researchers are focusing on this application.

To this end, it is essential to have a pediatric database, not an easy task given that few children suffer from a cardiorespiratory arrest. To draw up this database, researchers needed data on hundreds of normal heartbeats and life-threatening ones and for this they had the help of hospitals and doctors registering the heartbeats of children.

Once the database was drawn up, reliable algorithms suitable for children were designed, i.e. digitalised signals or the electrocardiograms registered by the computers were processed and a number of parameters analysed such as, for example, the frequency of the electrical signals, their morphology, their spectrum and the most significant time/frequency parameters. Depending on all these parameters, the researchers carry out a classification of the signals, thus enabling a decision to be made if there is a life-threatening heart rate.

The obstacle of time

As mentioned before, time makes the difference between life and death in many of these cases. Often, a massage is sufficient to reanimate the heart and recover a normal heartbeat. Sometimes, however, a massage is insufficient and this is when time may be lost. In fact, when a massage is given, an electrocardiogram signal cannot be analysed nor can an electric discharge be applied. So, until a study of the electric signals is carried out and a check made to see if an electro-treatment will save a patient from almost certain death, seconds and minutes will have passed; seconds and minutes that make a difference between life and death The UPV-EHU engineers have looked at the option of unifying the automatic defibrillator analysis and the massage. The problem is that the signal received by the AED from the skin is distorted by the movement due to the massage, and so the result of the diagnosis is not very reliable. The UPV-EHU researchers have undertaken research on specific methods which avoid these distorsions and obtain a more reliable diagnosis.

They apply specific methods in order to distinguish the clean signal without distorsions. For example, they obtain samples of certain electrocardiograms or signals and apply specific algorithms to them. Aided by these algorithms, the aim is to differentiate the noise or distorsion of the signal from the undistorted one. When this is achieved, there is no obstacle to applying defibrillation and the massage at the same time.

The methods applied to date, in various areas, are providing fascinating results. The goal of the UPV-EHU researchers is to publish these in the near future..

Irati Kortabitarte | alfa
Further information:
http://www.basqueresearch.com/berria_irakurri.asp?Berri_Kod=1430&hizk=I

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>