Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Algorithms to reanimate the heart

04.10.2007
When an adult suffers a cardiorespiratory arrest the rapid application of an electrical discharge with a defibrillator can avoid sudden death in many cases.

Nevertheless, defibrillation also has its impediment or enemy: time. For every minute that passes from the moment of the attack, the possibilities of survival drop by 10%. This is why, in order to avoid avoidable deaths, more and more easy-to-handle, automatic defibrillators are being designed, sold and installed.

Automatic defibrillators or AEDs (Automatic External Defibrillators) have been around now for some ten years. The main elements of these devices are based on algorithms that help undertake a study and diagnosis of the electrical signals from the heart. The defibrillator reads the patient’s heartbeat and carries out a continuous report of the state of the organ. Once this analysis is completed, it communicates whether or not an electric discharge is necessary, i.e. it will tell if, on applying electro-treatment, the heart will recover its usual pace or not.

In fact, this last was the starting point for researchers at the Department of Electronics and Telecommunications at the Higher Technical Engineering School in Bilbao (the University of the Basque Country - UPV-EHU); i.e. drawing up algorithms for defibrillators designed for adults. In this research, however, they are investigating algorithms that are reliably applicable for children and overcoming that obstacle of time.

AEDs for children

The use of automatic defibrillators for adults is quite widespread. The heartbeat of a child under 8, however, is quite different from that of an adult. What happens when a child suffers a cardiorespiratory arrest? The use of such devices with children has been authorised for some two years now, and the UPV-EHU researchers are focusing on this application.

To this end, it is essential to have a pediatric database, not an easy task given that few children suffer from a cardiorespiratory arrest. To draw up this database, researchers needed data on hundreds of normal heartbeats and life-threatening ones and for this they had the help of hospitals and doctors registering the heartbeats of children.

Once the database was drawn up, reliable algorithms suitable for children were designed, i.e. digitalised signals or the electrocardiograms registered by the computers were processed and a number of parameters analysed such as, for example, the frequency of the electrical signals, their morphology, their spectrum and the most significant time/frequency parameters. Depending on all these parameters, the researchers carry out a classification of the signals, thus enabling a decision to be made if there is a life-threatening heart rate.

The obstacle of time

As mentioned before, time makes the difference between life and death in many of these cases. Often, a massage is sufficient to reanimate the heart and recover a normal heartbeat. Sometimes, however, a massage is insufficient and this is when time may be lost. In fact, when a massage is given, an electrocardiogram signal cannot be analysed nor can an electric discharge be applied. So, until a study of the electric signals is carried out and a check made to see if an electro-treatment will save a patient from almost certain death, seconds and minutes will have passed; seconds and minutes that make a difference between life and death The UPV-EHU engineers have looked at the option of unifying the automatic defibrillator analysis and the massage. The problem is that the signal received by the AED from the skin is distorted by the movement due to the massage, and so the result of the diagnosis is not very reliable. The UPV-EHU researchers have undertaken research on specific methods which avoid these distorsions and obtain a more reliable diagnosis.

They apply specific methods in order to distinguish the clean signal without distorsions. For example, they obtain samples of certain electrocardiograms or signals and apply specific algorithms to them. Aided by these algorithms, the aim is to differentiate the noise or distorsion of the signal from the undistorted one. When this is achieved, there is no obstacle to applying defibrillation and the massage at the same time.

The methods applied to date, in various areas, are providing fascinating results. The goal of the UPV-EHU researchers is to publish these in the near future..

Irati Kortabitarte | alfa
Further information:
http://www.basqueresearch.com/berria_irakurri.asp?Berri_Kod=1430&hizk=I

More articles from Health and Medicine:

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

nachricht Better equipped in the fight against lung cancer
16.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Matabele ants: Travelling faster with detours

22.05.2018 | Life Sciences

Flow of cerebrospinal fluid regulates neural stem cell division

22.05.2018 | Life Sciences

Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal

22.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>