Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cancer researchers seek safe reduction of radiotherapy

04.10.2007
University of Manchester scientists will discuss their research aimed at reducing the side effects of radiotherapy without decreasing its effectiveness at the National Cancer Research Institute conference in Birmingham today (Tuesday 2 October 2007).

Around half of patients receive radiotherapy as part of their cancer treatment but the dose is limited by the possibility of causing side effects (toxicity) to the normal tissues and organs that surround the tumour. Some patients are more likely to experience these side effects than others: that is, there is an individual variation in tissue response. Some patients will be very sensitive.

Dr Catharine West, of the University's Cancer Studies research group, and Dr Neil Burnet, of the University of Cambridge, are leading a large multi-centre UK study designed to identify the common genetic variations that are associated with such side effects. The study - Radiogenomics: Assessment of Polymorphisms for Predicting the Effects of Radiotherapy (RAPPER) - is funded by Cancer Research UK and aims to extract DNA from the blood samples of 2,200 patients with a variety of cancers.

Dr West explains: "This is a very exciting development in cancer research.
Genotyping studies should provide a means of identifying radiosensitive patients and lead to a greater individualisation of radiation dose prescription to optimise tumour control while reducing toxicity."

Dr West and her team are also involved in a study of patients with soft tissue sarcoma (cancer in the muscles), a rare cancer that accounts for approximately 1% of adult cancers with around 1,200 cases in the UK each year, again funded by Cancer Research UK.

VORTEX - led by Dr Martin Robinson at the University of Sheffield - is a randomised trial to assess if reducing post-operative radiotherapy in patients with soft tissue sarcoma (cancer of the muscle) increases their limb function without compromising the treatment. The Manchester team are using samples from VORTEX to carry out VORTEX-BIOBANK, a study that aims to develop a tumour profile that will identify patients with an increased likelihood of secondary cancer. The team also aims to investigate associations between common genetic variation and a patient's risk of radiation induced side-effects in this particular cancer, as they are doing for a variety of other cancers in RAPPER.

Miss Rebecca Elliott, who will make a presentation about the team's work at the conference today, says: "There is exciting high-throughput technology out there and we are looking at the possibility of individualising patient treatment. The technology allows us to look at the variation and expression of genes to see which genes indicate who will be sensitive to radiotherapy. In future we will have a patient profile - if you have certain versions of genes x, y and z, then you have the chance of getting toxicity one hundred times more than someone with other versions."

"Although we are still collecting samples and are some way off getting our final results, it is an important new pathway in cancer research."

Jon Keighren | alfa
Further information:
http://www.manchester.ac.uk/aboutus/news/

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New Method of Characterizing Graphene

Scientists have developed a new method of characterizing graphene’s properties without applying disruptive electrical contacts, allowing them to investigate both the resistance and quantum capacitance of graphene and other two-dimensional materials. Researchers from the Swiss Nanoscience Institute and the University of Basel’s Department of Physics reported their findings in the journal Physical Review Applied.

Graphene consists of a single layer of carbon atoms. It is transparent, harder than diamond and stronger than steel, yet flexible, and a significantly better...

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

3D printer inks from the woods

30.05.2017 | Life Sciences

How circadian clocks communicate with each other

30.05.2017 | Life Sciences

Graphene and quantum dots put in motion a CMOS-integrated camera that can see the invisible

30.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>