Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cancer researchers seek safe reduction of radiotherapy

04.10.2007
University of Manchester scientists will discuss their research aimed at reducing the side effects of radiotherapy without decreasing its effectiveness at the National Cancer Research Institute conference in Birmingham today (Tuesday 2 October 2007).

Around half of patients receive radiotherapy as part of their cancer treatment but the dose is limited by the possibility of causing side effects (toxicity) to the normal tissues and organs that surround the tumour. Some patients are more likely to experience these side effects than others: that is, there is an individual variation in tissue response. Some patients will be very sensitive.

Dr Catharine West, of the University's Cancer Studies research group, and Dr Neil Burnet, of the University of Cambridge, are leading a large multi-centre UK study designed to identify the common genetic variations that are associated with such side effects. The study - Radiogenomics: Assessment of Polymorphisms for Predicting the Effects of Radiotherapy (RAPPER) - is funded by Cancer Research UK and aims to extract DNA from the blood samples of 2,200 patients with a variety of cancers.

Dr West explains: "This is a very exciting development in cancer research.
Genotyping studies should provide a means of identifying radiosensitive patients and lead to a greater individualisation of radiation dose prescription to optimise tumour control while reducing toxicity."

Dr West and her team are also involved in a study of patients with soft tissue sarcoma (cancer in the muscles), a rare cancer that accounts for approximately 1% of adult cancers with around 1,200 cases in the UK each year, again funded by Cancer Research UK.

VORTEX - led by Dr Martin Robinson at the University of Sheffield - is a randomised trial to assess if reducing post-operative radiotherapy in patients with soft tissue sarcoma (cancer of the muscle) increases their limb function without compromising the treatment. The Manchester team are using samples from VORTEX to carry out VORTEX-BIOBANK, a study that aims to develop a tumour profile that will identify patients with an increased likelihood of secondary cancer. The team also aims to investigate associations between common genetic variation and a patient's risk of radiation induced side-effects in this particular cancer, as they are doing for a variety of other cancers in RAPPER.

Miss Rebecca Elliott, who will make a presentation about the team's work at the conference today, says: "There is exciting high-throughput technology out there and we are looking at the possibility of individualising patient treatment. The technology allows us to look at the variation and expression of genes to see which genes indicate who will be sensitive to radiotherapy. In future we will have a patient profile - if you have certain versions of genes x, y and z, then you have the chance of getting toxicity one hundred times more than someone with other versions."

"Although we are still collecting samples and are some way off getting our final results, it is an important new pathway in cancer research."

Jon Keighren | alfa
Further information:
http://www.manchester.ac.uk/aboutus/news/

More articles from Health and Medicine:

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht What does congenital Zika syndrome look like?
24.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>