Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Why don't painkillers work for people with fibromyalgia?

Research may explain why common drugs don't help

People who have the common chronic pain condition fibromyalgia often report that they don’t respond to the types of medication that relieve other people’s pain. New research from the University of Michigan Health System helps to explain why that might be: Patients with fibromyalgia were found to have reduced binding ability of a type of receptor in the brain that is the target of opioid painkiller drugs such as morphine.

The study included positron emission tomography (PET) scans of the brains of patients with fibromyalgia, and of an equal number of sex- and age-matched people without the often-debilitating condition. Results showed that the fibromyalgia patients had reduced mu-opioid receptor (MOR) availability within regions of the brain that normally process and dampen pain signals – specifically, the nucleus accumbens, the anterior cingulate and the amygdala.

“The reduced availability of the receptor was associated with greater pain among people with fibromyalgia,” says lead author Richard E. Harris, Ph.D., research investigator in the Division of Rheumatology at the U-M Medical School's Department of Internal Medicine and a researcher at the U-M Chronic Pain and Fatigue Research Center.

“These findings could explain why opioids are anecdotally thought to be ineffective in people with fibromyalgia,” he notes. The findings appear in The Journal of Neuroscience. “The finding is significant because it has been difficult to determine the causes of pain in patients with fibromyalgia, to the point that acceptance of the condition by medical practitioners has been slow.”

Opioid pain killers work by binding to opioid receptors in the brain and spinal cord. In addition to morphine, they include codeine, propoxyphene-containing medications such as Darvocet, hydrocodone-containing medications such as Vicodin, and oxycodone-containing medications such as Oxycontin.

The researchers theorize based on their findings that, with the lower availability of the MORs in three regions of the brains of people with fibromyalgia, such painkillers may not be able to bind as well to the receptors as they can in the brains of people without the condition.

Put more simply: When the painkillers cannot bind to the receptors, they cannot alleviate the patient’s pain as effectively, Harris says. The reduced availability of the receptors could result from a reduced number of opioid receptors, enhanced release of endogenous opioids (opioids, such as endorphins, that are produced naturally by the body), or both, Harris says.

The research team also found a possible link with depression. The PET scans showed that the fibromyalgia patients with more depressive symptoms had reductions of MOR binding potential in the amygdala, a region of the brain thought to modulate mood and the emotional dimension of pain.

The study subjects were 17 women with fibromyalgia and 17 women without the condition.

Katie Vloet | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

nachricht Breakthrough in Mapping Nicotine Addiction Could Help Researchers Improve Treatment
04.10.2016 | UT Southwestern Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>