Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Why don't painkillers work for people with fibromyalgia?

01.10.2007
Research may explain why common drugs don't help

People who have the common chronic pain condition fibromyalgia often report that they don’t respond to the types of medication that relieve other people’s pain. New research from the University of Michigan Health System helps to explain why that might be: Patients with fibromyalgia were found to have reduced binding ability of a type of receptor in the brain that is the target of opioid painkiller drugs such as morphine.

The study included positron emission tomography (PET) scans of the brains of patients with fibromyalgia, and of an equal number of sex- and age-matched people without the often-debilitating condition. Results showed that the fibromyalgia patients had reduced mu-opioid receptor (MOR) availability within regions of the brain that normally process and dampen pain signals – specifically, the nucleus accumbens, the anterior cingulate and the amygdala.

“The reduced availability of the receptor was associated with greater pain among people with fibromyalgia,” says lead author Richard E. Harris, Ph.D., research investigator in the Division of Rheumatology at the U-M Medical School's Department of Internal Medicine and a researcher at the U-M Chronic Pain and Fatigue Research Center.

“These findings could explain why opioids are anecdotally thought to be ineffective in people with fibromyalgia,” he notes. The findings appear in The Journal of Neuroscience. “The finding is significant because it has been difficult to determine the causes of pain in patients with fibromyalgia, to the point that acceptance of the condition by medical practitioners has been slow.”

Opioid pain killers work by binding to opioid receptors in the brain and spinal cord. In addition to morphine, they include codeine, propoxyphene-containing medications such as Darvocet, hydrocodone-containing medications such as Vicodin, and oxycodone-containing medications such as Oxycontin.

The researchers theorize based on their findings that, with the lower availability of the MORs in three regions of the brains of people with fibromyalgia, such painkillers may not be able to bind as well to the receptors as they can in the brains of people without the condition.

Put more simply: When the painkillers cannot bind to the receptors, they cannot alleviate the patient’s pain as effectively, Harris says. The reduced availability of the receptors could result from a reduced number of opioid receptors, enhanced release of endogenous opioids (opioids, such as endorphins, that are produced naturally by the body), or both, Harris says.

The research team also found a possible link with depression. The PET scans showed that the fibromyalgia patients with more depressive symptoms had reductions of MOR binding potential in the amygdala, a region of the brain thought to modulate mood and the emotional dimension of pain.

The study subjects were 17 women with fibromyalgia and 17 women without the condition.

Katie Vloet | EurekAlert!
Further information:
http://www.umich.edu

More articles from Health and Medicine:

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

nachricht The gut microbiota plays a key role in treatment with classic diabetes medication
01.06.2017 | University of Gothenburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>