Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular fingerprint of breast cancer drug resistance can predict response to treatment

25.09.2007
A way of predicting which patients will respond well to treatment with a common chemotherapy drug used in breast cancer was unveiled at the European Cancer Conference (ECCO 14) today (Monday 24 September).

Dr Iain Brown, from the University of Aberdeen, Aberdeen, Scotland, told the conference that he and his colleague, Dr Andrew Schofield, had identified two genes that could identify which cells would be resistant and which would respond to docetaxel.

Docetaxel is one of the most effective chemotherapy treatments in advanced breast cancer. It works by binding to cell components called microtubules, and stabilising them so that they do not disassemble. They then accumulate within the cell and bring about apoptosis, or cell death. “However, up to half of all patients treated with this drug will develop resistance, and hence the treatment will fail,” said Dr Brown.

The scientists decided to look for a specific genetic make-up in patients where docetaxel treatment had failed, in the hope that this might explain why they became resistant to the drug. They used micro-array analysis, a technique that allowed them to look at every known gene in our cells at once, to identify genes that were significantly associated with such resistance.

“By going back to the laboratory, using breast cancer cell lines, we can eliminate much of the variation in gene expression found in different patients, and thus remove a lot of ‘background noise’,” said Dr Brown. “We developed a unique model of docetaxel resistance in breast cancer from two different cell lines made resistant to the drug by exposing them to increasing concentrations of the drug. This model has also allowed us to test cells which are resistant to low levels of the drug and cells which are resistant to high levels.”

Drs Brown and Schofield now intend to carry the research further, by applying their findings to patient samples to see whether the gene set they have discovered has the ability to predict response to docetaxel in a patient who has undergone treatment with the drug. “At the moment we have only tested this in cell lines,” said Dr Brown, “but we do believe these results may be translated into the clinical setting and benefit the patient. In essence, we have taken a clinical problem back to the laboratory, and now we intend to take this back to the bedside.”

The scientists will start collecting tissue samples from patients within the next six months. “If we find the same results in patient samples, we would expect that a simple test for docetaxel resistance could be developed and in clinical use within the next five years,” said Dr. Brown. Such a test would mean that those who would not benefit from docetaxel chemotherapy could be spared its side effects, and also reduce costs for healthcare providers.

“We think that the changes we have found may represent common drug resistance mechanisms in breast cancer cells,” said Dr Brown. “We are currently looking at these findings in other cancer types, especially those which are also treated with docetaxel, to see if the results may have a potential in other areas. This is the first time that the genetic pathways involved in the evolution of acquired resistance to docetaxel have been identified in a docetaxel resistant cell line model.”

Mary Rice | alfa
Further information:
http://www.ecco-org.eu

More articles from Health and Medicine:

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht What does congenital Zika syndrome look like?
24.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>