Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel cartilage repair therapy

11.04.2002


Diseases involving irremediable tissue damage of the musculoskeletal system account today for about 15% of hospital admissions in developed countries. With the ageing of the population, this is believed to gain significantly in importance in the coming years.



The majority of the disorders affecting the musculoskeletal system are the joint diseases, in particular osteoarthritis. The latter disease process is typically initiated and associated with defects of the articular cartilage and the underlying bone, causing pain as well as functional impairment. Early tissue repair resulting in the functional restoration of damaged joint surfaces is expected to prevent the development of osteoarthritis, and slow down the progression of the disease.

Different solutions and therapies are currently available for the local treatment of joint surface defects. Ranging from small-scaled arthroscopic debridement with microfracture or osteochondral grafting, to radical surgery involving total joint replacement by implantation of prosthesis. However, as the lifetime of joint prosthesis is limited, and with the ageing of the population, there is an increased need for more long lasting biological repair procedures.


Recent therapeutic approaches aim at repairing the articular cartilage by implantation of expanded cartilage cells. Cells used for the procedure are often autologous chondrocytes (i.e. a patient’s own cartilaginous cells), obtained from the patient`s involved joint via biopsy. Main difficulties with this technology include, amongst others, the so called “de-differentiation” of the cells which, during the in vitro expansion, loose their proper function i.e. the potential to form stable hyaline cartilage. The expanded cells instead can only make disorganized low quality fibro-cartilaginous tissue having different functional properties than the original articular cartilage covering the joints. Many existing therapeutic tissue regeneration methods therefore may lead to failure in mid- and long-term and, sometimes, may even aggravate the local damage.

TiGenix improves the Autologuous Chondrocyte Implantation procedure

The recently founded Belgian company TiGenix has been able to overcome this difficulty, unblocking herewith the way for successful and long-lasting tissue regeneration. Focusing on joint-surface defects and based on its own research, the company has been able to consistently grow the required hyaline-type cartilage in vivo. TiGenix has discovered specific molecular markers which are used to predict the ability of a cell population to form stable hyaline cartilage in vivo.

From these research findings, TiGenix has subsequently developed the cellular therapeutic product ChondroCelect®. ChondroCelect® is a proprietary technology using the patient`s own cells, resulting in a consistent and reproducible cell product, expected to improve the outcome of an autologous chondrocyte implantation procedure.
ChondroCelect® recently entered a prospective randomized clinical trial in 9 orthopedic centers in Belgium. The company actively prepares the extension of the trial to medical centers in other European countries. The commercial launch of ChondroCelect® is foreseen in 2004.

Therapies of next generation

The repair of chondral (cartilage) defects is the first application of TiGenix` research. The company has also identified specific markers that will enable the selection of adult multipotent precursor cells as the basis for next-generation tissue repair. The latter include therapeutic solutions for osteochondral (cartilage and underlying bone) defects and ultimately novel treatment options for osteoarthritis.

Who is TiGenix ?

TiGenix was founded in February 2000 as a spin-off of the University of Leuven (Belgium) by Frank Luyten, M.D., Ph.D., Professor at the Faculty of Medicine of the University of Leuven and Chairman of the Department of Rheumatology at the same university; and Ir. Gil Beyen, Partner at Arthur D. Little in Brussels and specialist in the healthcare sector.

TiGenix is a biomedical company with the mission of developing innovative products for successful repair and functional regeneration of damaged human tissue. The company aims at becoming one of the leading players in the field of musculoskeletal tissue engineering.

To do so, TiGenix is built on a multidisciplinary technology platform, combining expertise in cell and developmental biology, biomaterials and biosurgery. Various collaborations and strategic partnerships have been put in place to ensure the technological advancement and further developments of TiGenix, including with leading research centers, a bioinformatics company as well as Belgian and international experts as scientific advisors.

Currently Tigenix employs 20 people of which 11 are active in Research & Development. The new offices are located near the city of Leuven, while the company`s own GMP cell expansion facilities are located in the premises of the nearby Leuven University hospital center.

To date, TiGenix has been financed through seed capital, in a round led by Gemma Frisius Fund, and through technology grants from the Flemish government. To finance its further development and expansion strategy, the company is currently raising additional equity capital through a private placement.

Patrick Valkenberg | alphagalileo

More articles from Health and Medicine:

nachricht A promising target for kidney fibrosis
21.04.2017 | Brigham and Women's Hospital

nachricht Stem cell transplants: activating signal paths may protect from graft-versus-host disease
20.04.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>