Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MIT model could improve some drugs' effectiveness

24.09.2007
MIT researchers have developed a computer modeling approach that could improve a class of drugs based on antibodies, molecules key to the immune system. The model can predict structural changes in an antibody that will improve its effectiveness.

The team has already used the model to create a new version of cetuximab, a drug commonly used to treat colorectal cancer, that binds to its target with 10 times greater affinity than the original molecule.

The work, which will appear Sept. 23 in an advance publication of Nature Biotechnology, results from a collaboration using both laboratory experiments and computer simulations, between MIT Professors Dane Wittrup and Bruce Tidor.

"New and better methods for improving antibody development represent critical technologies for medicine and biotechnology," says Wittrup, who holds appointments in MIT's Department of Biological Engineering and Department of Chemical Engineering. Tidor holds appointments in Biological Engineering and the Department of Electrical Engineering and Computer Science.

Antibodies, which are part of nature's own defense system against pathogens, are often used for diagnostics and therapeutics. Starting with a specific antibody, the MIT model looks at many possible amino-acid substitutions that could occur in the antibody. It then calculates which substitutions would result in a structure that would form a stronger interaction with the target.

"Combining information about protein (antibody) structure with calculations that address the underlying atomic interactions allows us to make rational choices about which changes should be made to a protein to improve its function," said Shaun Lippow, lead author of the Nature Biotechnology paper.

"Protein modeling can reduce the cost of developing antibody-based drugs," Lippow added, "as well as enable the design of additional protein-based products such as enzymes for the conversion of biomass to fuel." Lippow conducted the research as part of his thesis work in chemical engineering at MIT, and is now a member of the protein engineering group at Codon Devices in Cambridge, Mass.

"Making drugs out of huge, complicated molecules like antibodies is incredibly hard," said Janna Wehrle, who oversees computational biology grants at the National Institute of General Medical Sciences, which partially supported the research. "Dr. Tidor's new computational method can predict which changes in an antibody will make it work better, allowing chemists to focus their efforts on the most promising candidates. This is a perfect example of how modern computing can be harnessed to speed up the development of new drugs."

Traditionally, researchers have developed antibody-based drugs using an evolutionary approach. They remove antibodies from mice and further evolve them in the laboratory, screening for improved efficacy. This can lead to improved binding affinities but the process is time-consuming, and it restricts the control that researchers have over the design of antibodies.

In contrast, the MIT computational approach can quickly calculate a huge number of possible antibody variants and conformations, and predict the molecules' binding affinity for their targets based on the interactions that occur between atoms.

Using the new approach, researchers can predict the effectiveness of mutations that might never arise by natural evolution.

"The work demonstrates that by building on the physics underlying biological molecules, you can engineer improvements in a very precise way," said Tidor.

Expanding on that theme, Wittrup and Tidor also co-teach a class and are writing a textbook focusing on connecting fundamental molecular and cellular events to biological function through the use of mathematical models and computer simulations.

The team also used the model with an anti-lysozyme antibody called D44.1, and they were able to achieve a 140-fold improvement in its binding affinity. The authors expect the model will be useful with other antibodies as well.

The research was funded by the National Science Foundation and the National Institutes of Health.

Written by Anne Trafton, MIT News Office

Elizabeth A. Thomson | MIT News Office
Further information:
http://www.mit.edu

More articles from Health and Medicine:

nachricht Usher syndrome: Gene therapy restores hearing and balance
25.09.2017 | Institut Pasteur

nachricht MRI contrast agent locates and distinguishes aggressive from slow-growing breast cancer
25.09.2017 | Case Western Reserve University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>