Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MIT model could improve some drugs' effectiveness

24.09.2007
MIT researchers have developed a computer modeling approach that could improve a class of drugs based on antibodies, molecules key to the immune system. The model can predict structural changes in an antibody that will improve its effectiveness.

The team has already used the model to create a new version of cetuximab, a drug commonly used to treat colorectal cancer, that binds to its target with 10 times greater affinity than the original molecule.

The work, which will appear Sept. 23 in an advance publication of Nature Biotechnology, results from a collaboration using both laboratory experiments and computer simulations, between MIT Professors Dane Wittrup and Bruce Tidor.

"New and better methods for improving antibody development represent critical technologies for medicine and biotechnology," says Wittrup, who holds appointments in MIT's Department of Biological Engineering and Department of Chemical Engineering. Tidor holds appointments in Biological Engineering and the Department of Electrical Engineering and Computer Science.

Antibodies, which are part of nature's own defense system against pathogens, are often used for diagnostics and therapeutics. Starting with a specific antibody, the MIT model looks at many possible amino-acid substitutions that could occur in the antibody. It then calculates which substitutions would result in a structure that would form a stronger interaction with the target.

"Combining information about protein (antibody) structure with calculations that address the underlying atomic interactions allows us to make rational choices about which changes should be made to a protein to improve its function," said Shaun Lippow, lead author of the Nature Biotechnology paper.

"Protein modeling can reduce the cost of developing antibody-based drugs," Lippow added, "as well as enable the design of additional protein-based products such as enzymes for the conversion of biomass to fuel." Lippow conducted the research as part of his thesis work in chemical engineering at MIT, and is now a member of the protein engineering group at Codon Devices in Cambridge, Mass.

"Making drugs out of huge, complicated molecules like antibodies is incredibly hard," said Janna Wehrle, who oversees computational biology grants at the National Institute of General Medical Sciences, which partially supported the research. "Dr. Tidor's new computational method can predict which changes in an antibody will make it work better, allowing chemists to focus their efforts on the most promising candidates. This is a perfect example of how modern computing can be harnessed to speed up the development of new drugs."

Traditionally, researchers have developed antibody-based drugs using an evolutionary approach. They remove antibodies from mice and further evolve them in the laboratory, screening for improved efficacy. This can lead to improved binding affinities but the process is time-consuming, and it restricts the control that researchers have over the design of antibodies.

In contrast, the MIT computational approach can quickly calculate a huge number of possible antibody variants and conformations, and predict the molecules' binding affinity for their targets based on the interactions that occur between atoms.

Using the new approach, researchers can predict the effectiveness of mutations that might never arise by natural evolution.

"The work demonstrates that by building on the physics underlying biological molecules, you can engineer improvements in a very precise way," said Tidor.

Expanding on that theme, Wittrup and Tidor also co-teach a class and are writing a textbook focusing on connecting fundamental molecular and cellular events to biological function through the use of mathematical models and computer simulations.

The team also used the model with an anti-lysozyme antibody called D44.1, and they were able to achieve a 140-fold improvement in its binding affinity. The authors expect the model will be useful with other antibodies as well.

The research was funded by the National Science Foundation and the National Institutes of Health.

Written by Anne Trafton, MIT News Office

Elizabeth A. Thomson | MIT News Office
Further information:
http://www.mit.edu

More articles from Health and Medicine:

nachricht New vaccine production could improve flu shot accuracy
25.07.2017 | Duke University

nachricht Chances to treat childhood dementia
24.07.2017 | Julius-Maximilians-Universität Würzburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>