Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists identify cause of Job's syndrome

The rare immunodeficiency disorder known as Job’s syndrome is caused by a specific genetic mutation that both overstimulates and understimulates the human immune system, leading to harmful bacterial and fungal infections and the physical features characteristic of the syndrome, according to two independent groups of scientists, one from the National Institutes of Health (NIH) and the other from the Tokyo Medical and Dental University.

The NIH team’s report will be available the evening of September 19 online in The New England Journal of Medicine. The Tokyo group published its findings in Nature last month.

“Understanding the genetic cause of this rare immunological disorder is a signal accomplishment, revealing information that has been sought for decades,” says Anthony S. Fauci, M.D., director of the National Institute of Allergy and Infectious Diseases (NIAID), a component of NIH. "The immunological insights from this study not only promise to open new therapeutic doors for Job’s syndrome, but also provide new leads for treating other immunodeficiency diseases.”

Only about 250 cases of Job’s syndrome (pronounced like “robe,” and technically known as hyperimmunoglobulin E syndrome, or HIES) have been reported since it was first discovered in 1966. While individuals with Job’s syndrome often live long lives, life-threatening complications from basic infections are a constant concern. Identifying the specific gene implicated in the disease could benefit scientific study of several diseases that afflict people with Job’s syndrome, including infections caused by Aspergillus, Candida and Staphylococcus.

Job’s syndrome makes the immune system extremely sensitive to invading microbes. People with the syndrome often have multiple, recurring ailments, such as skin infections that cause lesions and boils, and lung infections that cause pneumonia. They also are at high risk of breaking bones, having a curved spine, and experiencing facial and dental developmental difficulties. There is no cure for Job’s syndrome, although antibiotics and antifungals are used to prevent and treat the infections associated with the disorder.

Steven M. Holland, M.D., chief of the NIAID Laboratory of Clinical Infectious Diseases, led the research team that over several years assembled the patient group that helped unravel the 41-year-old mystery. A key finding involved work with proteins that alert the body to increase production of white blood cells, increase immune-enhancing chemicals, and increase their killing of invaders. These signal transducer and activator of transcription (STAT) proteins help alert and direct immune system responses to stop invading pathogens. In 48 Job’s syndrome patients, Dr. Holland’s team sequenced the gene that makes STAT3 protein and discovered that mutations in the gene causes Job’s syndrome.

The team became interested in the role of the STAT3 gene after observing increased levels of some immune system responses in Job’s patients, but inadequate levels of response to others, indicating a defect in immune system signaling. Researchers found mutations in the STAT3 gene in 48 patients with Job’s, but not in 48 unaffected relatives or 158 unaffected people in a control group.

“We found that Job’s is associated with excessive immune reaction, not deficient immune reaction as many people suspected,” says Dr. Holland. “STAT3 is the key, and it can become a really powerful tool to dissect other aspects of immunity at a molecular and functional level.” For example, in studies done in mice, other investigators have demonstrated specific roles for STAT3 in bone and organ development, preservation and inflammation.

Ken Pekoc | EurekAlert!
Further information:

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>