Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists identify cause of Job's syndrome

21.09.2007
The rare immunodeficiency disorder known as Job’s syndrome is caused by a specific genetic mutation that both overstimulates and understimulates the human immune system, leading to harmful bacterial and fungal infections and the physical features characteristic of the syndrome, according to two independent groups of scientists, one from the National Institutes of Health (NIH) and the other from the Tokyo Medical and Dental University.

The NIH team’s report will be available the evening of September 19 online in The New England Journal of Medicine. The Tokyo group published its findings in Nature last month.

“Understanding the genetic cause of this rare immunological disorder is a signal accomplishment, revealing information that has been sought for decades,” says Anthony S. Fauci, M.D., director of the National Institute of Allergy and Infectious Diseases (NIAID), a component of NIH. "The immunological insights from this study not only promise to open new therapeutic doors for Job’s syndrome, but also provide new leads for treating other immunodeficiency diseases.”

Only about 250 cases of Job’s syndrome (pronounced like “robe,” and technically known as hyperimmunoglobulin E syndrome, or HIES) have been reported since it was first discovered in 1966. While individuals with Job’s syndrome often live long lives, life-threatening complications from basic infections are a constant concern. Identifying the specific gene implicated in the disease could benefit scientific study of several diseases that afflict people with Job’s syndrome, including infections caused by Aspergillus, Candida and Staphylococcus.

Job’s syndrome makes the immune system extremely sensitive to invading microbes. People with the syndrome often have multiple, recurring ailments, such as skin infections that cause lesions and boils, and lung infections that cause pneumonia. They also are at high risk of breaking bones, having a curved spine, and experiencing facial and dental developmental difficulties. There is no cure for Job’s syndrome, although antibiotics and antifungals are used to prevent and treat the infections associated with the disorder.

Steven M. Holland, M.D., chief of the NIAID Laboratory of Clinical Infectious Diseases, led the research team that over several years assembled the patient group that helped unravel the 41-year-old mystery. A key finding involved work with proteins that alert the body to increase production of white blood cells, increase immune-enhancing chemicals, and increase their killing of invaders. These signal transducer and activator of transcription (STAT) proteins help alert and direct immune system responses to stop invading pathogens. In 48 Job’s syndrome patients, Dr. Holland’s team sequenced the gene that makes STAT3 protein and discovered that mutations in the gene causes Job’s syndrome.

The team became interested in the role of the STAT3 gene after observing increased levels of some immune system responses in Job’s patients, but inadequate levels of response to others, indicating a defect in immune system signaling. Researchers found mutations in the STAT3 gene in 48 patients with Job’s, but not in 48 unaffected relatives or 158 unaffected people in a control group.

“We found that Job’s is associated with excessive immune reaction, not deficient immune reaction as many people suspected,” says Dr. Holland. “STAT3 is the key, and it can become a really powerful tool to dissect other aspects of immunity at a molecular and functional level.” For example, in studies done in mice, other investigators have demonstrated specific roles for STAT3 in bone and organ development, preservation and inflammation.

Ken Pekoc | EurekAlert!
Further information:
http://www.niaid.nih.gov
http://clinicalresearch.nih.gov/stories_schultz_m.html

More articles from Health and Medicine:

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

nachricht Prospect for more effective treatment of nerve pain
20.02.2017 | Universität Zürich

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

NASA's fermi finds possible dark matter ties in andromeda galaxy

22.02.2017 | Physics and Astronomy

Wintering ducks connect isolated wetlands by dispersing plant seeds

22.02.2017 | Life Sciences

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>