Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chronic infection persists by targeting stromal cell network in lymphoid organs

19.09.2007
One of the biggest challenges to treating infectious diseases and developing preventive vaccines is the ability of many chronic infections to suppress the immune T-cell response over time.

An Emory-led team of scientists has discovered one important way in which chronic viral infections are able to evade the immune response. The research is reported this week online in the Proceedings of the National Academy of Sciences.

Using a mouse model, the scientists found that a chronic strain of lymphocytic choriomeningitis virus (LCMV) targeted a type of stromal cells in the lymphoid organs called fibroblastic reticular cells (FRC). In contrast, an acute strain of the virus had little effect on the FRC cells. FRC provide a three-dimensional framework used by immune cells to travel and interact with other immune cells within the lymphoid organs (spleen and lymph nodes). These FRC are important for the initiation of immune responses to infections. The researchers found that widespread infection of the FRC caused a disruption of the function of these important stromal cells.

Last year a group of Emory scientists led by Rafi Ahmed, PhD, and graduate student Daniel Barber and their colleagues discovered in mice another way in which the immune reaction to chronic infections is blocked -- a pathway called PD-1 that blocked the response to the chronic strain of LCMV.

The current research was conducted by Scott N. Mueller, PhD, a postdoctoral fellow in the laboratory of Dr. Ahmed, a Georgia Research Alliance Eminent Scholar and director of the Emory Vaccine Center. The team also included scientists from the Emory Transplant Center and Emory School of Medicine, the University of California, San Francisco (UCSF), the University of California, Los Angeles (UCLA), Harvard Medical School and the Dana-Farber Cancer Institute.

The research team discovered that infection of FRC may involve the previously discovered PD-1 pathway. The major ligand (binding molecule) for PD-1, PD-L1, is upregulated on FRC after infection. The PD-1 pathway may inhibit interactions between CD8+ T cells and FRC, preventing destruction of the FRC architecture in the spleen. This may help the virus to remain in infected FRC and contribute to long-term viral persistence.

"This research helps explain how the T-cell response can be suppressed in chronic viral infections," says Dr. Mueller. "As we learn more about the intricate mechanisms involved we will be able to develop better treatments, and potentially preventive vaccines, for chronic infections such as those caused by HIV and hepatitis C viruses."

Holly Korschun | EurekAlert!
Further information:
http://www.emory.edu

More articles from Health and Medicine:

nachricht Cystic fibrosis alters the structure of mucus in airways
29.06.2017 | University of Iowa Health Care

nachricht Mice provide insight into genetics of autism spectrum disorders
28.06.2017 | University of California - Davis

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making Waves

Computer scientists use wave packet theory to develop realistic, detailed water wave simulations in real time. Their results will be presented at this year’s SIGGRAPH conference.

Think about the last time you were at a lake, river, or the ocean. Remember the ripples of the water, the waves crashing against the rocks, the wake following...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Nanostructures taste the rainbow

29.06.2017 | Physics and Astronomy

New technique unveils 'matrix' inside tissues and tumors

29.06.2017 | Life Sciences

Cystic fibrosis alters the structure of mucus in airways

29.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>