Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cholesterol byproduct blocks heart health benefits of estrogen

18.09.2007
New findings by UT Southwestern Medical Center researchers show that a byproduct of cholesterol metabolism interferes with the beneficial effects estrogen has on the cardiovascular system, providing a better understanding of the interplay between cholesterol and estrogen in heart disease.

The results of the study, available online and in the October issue of the journal Nature Medicine, also may explain why hormone replacement therapy fails to protect some postmenopausal women from heart disease, said Dr. David Mangelsdorf, chairman of pharmacology and senior author of the paper.

The researchers found that in rodents, a molecule called 27-hydroxycholesterol, or 27HC, binds to the same receptors in the blood vessels of the heart to which estrogen binds.

The normal result of this estrogen binding is that blood vessel walls remain elastic and dilated, and damage to the vasculature is repaired, among other heart-protective effects. Other research has shown that postmenopausal women – who no longer produce estrogen – lose this protective action and become more susceptible to heart disease.

Based on their animal studies and other experiments, the UT Southwestern researchers determined that when estrogen levels dropped relative to the amount of 27HC circulating in the blood, 27HC reacted and bound to the estrogen receptors in the cardiovascular system and blocked their protective function, primarily by inhibiting the production of nitric oxide. Nitric oxide mediates smooth muscle relaxation in blood vessels, aids cell growth and repair, and prevents thrombosis. Reduced levels of nitric oxide in blood vessels has been linked with high cholesterol and diabetes.

In animals fed a high-fat, high-cholesterol diet, both cholesterol and 27HC levels were elevated.

“We found that 27HC can effectively inhibit estrogen function in vascular tissue by binding to estrogen receptors,” said Dr. Mangelsdorf, a Howard Hughes Medical Institute investigator at UT Southwestern. “This study not only illustrates the damaging effects high cholesterol has on the heart but also supports the notion that the relative levels of 27HC and estrogen in the vasculature are contributing factors to the risk for cardiovascular disease.”

In normal premenopausal women, the amount of 27HC generated from cholesterol is relatively low compared to the level of estrogen circulating in the blood, leading to enhanced cardiovascular protection. In contrast, when the level of 27HC is higher relative to estrogen, such as during the postmenopausal period or as a consequence of high cholesterol, the researchers speculate that 27HC out-competes estrogen to bind with estrogen receptors, blocking the function of the receptors and resulting in a loss of protection.

“This model may help explain why women are better protected than men from cardiovascular disease until they reach menopause,” said Dr. Mangelsdorf.

The findings also may help explain why a large clinical trial that evaluated certain hormone replacement therapies (HRT) in postmenopausal women – a component of the 15-year Women’s Health Initiative – had to be halted in 2002 when the hormones appeared to increase a woman’s risk of heart disease.

“In the Women’s Health Initiative research program, the women who began taking HRT were an average of 13 years postmenopause,” Dr. Manglesdorf said. “By the time they started taking this estrogen again, the damage caused by 27HC binding to the estrogen receptors in the cardiovascular system may already have occurred. Once you lose estrogen’s protection for such an extended period of time, you can’t get it back.”

The researchers also found that 27HC works predominantly on estrogen receptors in the cardiovascular system. When it binds to estrogen receptors in other tissues, such as reproductive tissues, it has no effect on their reproduction-related functions. This property of 27HC makes it a “selective estrogen receptor modulator,” or SERM, the first such naturally occurring molecule known to exhibit such selectivity.

“This molecule is remarkable in its selectivity for the vasculature,” Dr. Mangelsdorf said. “These findings also validate the estrogen receptor as a possible drug target for manufactured SERMs.”

Amanda Siegfried | EurekAlert!
Further information:
http://www.utsouthwestern.edu
http://www.utsouthwestern.edu/receivenews

More articles from Health and Medicine:

nachricht Indications of Psychosis Appear in Cortical Folding
26.04.2018 | Universität Basel

nachricht GLUT5 fluorescent probe fingerprints cancer cells
20.04.2018 | Michigan Technological University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Why we need erasable MRI scans

New technology could allow an MRI contrast agent to 'blink off,' helping doctors diagnose disease

Magnetic resonance imaging, or MRI, is a widely used medical tool for taking pictures of the insides of our body. One way to make MRI scans easier to read is...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Why we need erasable MRI scans

26.04.2018 | Medical Engineering

Balancing nuclear and renewable energy

26.04.2018 | Power and Electrical Engineering

Researchers 3-D print electronics and cells directly on skin

26.04.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>