Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New technology enables scientists to understand exactly what our eyes get up to while we read

10.09.2007
Being able to read competently is one of the most important skills we need to function in today’s fast-paced society. Analysing the way we read can offer valuable insights into how we process visual information. Scientists have been interested in the movements of our eyes while reading for forty years. However, until now most assumed that when we read both eyes look at the same letter of a word concurrently.

Now ground-breaking research by cognitive psychologist, Professor Simon Liversedge and his team at the University of Southampton has shown that this is not actually the case. They found that our eyes are actually up to something much more exciting when we read - our eyes look at different letters in the same word and then combine the different images through a process known as fusion.

The research Prof. Liversedge will present at the BA Festival of Science in York shows that the reading process is not as simple as one might think; it is rarely a case of the eyes scanning the page smoothly from left to right. Depending on what we are reading and how hard we are finding the information to digest our eyes make small jerky movements, that allow us to focus on a particularly difficult word or often re-read passages we didn’t get the first time. Analysing these eye movements enables psychologists to understand how our brain processes the sentence.

With sophisticated eye tracking equipment able to determine which letter of a font-size 14 word a person is looking at every millisecond from 1 metre away, Prof. Liversedge’s team went one further and looked at the letters within the word within the sentence. They were able to deduce that when our eyes are not looking at the same letter of the word, they are usually about two letters apart. Prof. Liversedge explains: ‘Although this difference might sound small, in fact it represents a very substantial difference in terms of the precise "picture" of the world that each eye delivers to the brain’.

So if our eyes are looking at different parts of the same word, thereby receiving different information from each eye, how is it that we are able to see the words clearly enough to read them? There are two ways the brain can do this; either the image from one of the eyes is blocked or the two different images are somehow fused together. To test how the latter mechanism might work, the team chose words that could easily split in two, such as cowboy, and presented half of the word to the left eye, and half to the right eye separately. They then analysed readers’ eye movements when reading sentences containing these particular words presented in this way.

‘We were able to clearly show that we experience a single, very clear and crisp visual representation due to fusion of the two different images from each eye,’ he explained. ‘Also when we decide which word to look at next we work out how far to move our eyes based on the fused visual representation built from the disparate signals of each eye.’

‘A comprehensive understanding of the psychological processes underlying reading is vital if we are to develop better methods of teaching children to read and offer remedial treatments for those with reading disorders such as dyslexia. Our team are now measuring the range of visual disparities over which both adult and child readers can successfully fuse words.’

Professor Simon Liversedge will give his talk, ‘What our eyes get up to while we read’ as part of the session entitled ‘What eye movements tell us about the brain and language’ on 14 September at Vanbrugh V/045, University of York as part of the BA Festival of Science.

The BA Festival of Science will be in York from 9-15 September, bringing over 350 of the UK’s top scientists and engineers to discuss the latest developments in science with the public. In addition to talks and debates at the University of York, there will be a host of events throughout the city.

For further information about the BA Festival of Science, including an online programme, visit www.the-ba.net/festivalofscience.

This year’s BA Festival of Science is organised by the BA (British Association for the Advancement of Science) in partnership with the University of York, Science City York and the City of York Council. It is supported by the Department for Innovation, Universities and Skills, BP and Yorkshire Forward.

Lisa Hendry | alfa
Further information:
http://www.the-ba.net

More articles from Health and Medicine:

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

nachricht Disrupted fat breakdown in the brain makes mice dumb
19.05.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Supercomputing helps researchers understand Earth's interior

23.05.2017 | Earth Sciences

Study identifies RNA molecule that shields breast cancer stem cells from immune system

23.05.2017 | Life Sciences

Turmoil in sluggish electrons’ existence

23.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>