Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New technology enables scientists to understand exactly what our eyes get up to while we read

10.09.2007
Being able to read competently is one of the most important skills we need to function in today’s fast-paced society. Analysing the way we read can offer valuable insights into how we process visual information. Scientists have been interested in the movements of our eyes while reading for forty years. However, until now most assumed that when we read both eyes look at the same letter of a word concurrently.

Now ground-breaking research by cognitive psychologist, Professor Simon Liversedge and his team at the University of Southampton has shown that this is not actually the case. They found that our eyes are actually up to something much more exciting when we read - our eyes look at different letters in the same word and then combine the different images through a process known as fusion.

The research Prof. Liversedge will present at the BA Festival of Science in York shows that the reading process is not as simple as one might think; it is rarely a case of the eyes scanning the page smoothly from left to right. Depending on what we are reading and how hard we are finding the information to digest our eyes make small jerky movements, that allow us to focus on a particularly difficult word or often re-read passages we didn’t get the first time. Analysing these eye movements enables psychologists to understand how our brain processes the sentence.

With sophisticated eye tracking equipment able to determine which letter of a font-size 14 word a person is looking at every millisecond from 1 metre away, Prof. Liversedge’s team went one further and looked at the letters within the word within the sentence. They were able to deduce that when our eyes are not looking at the same letter of the word, they are usually about two letters apart. Prof. Liversedge explains: ‘Although this difference might sound small, in fact it represents a very substantial difference in terms of the precise "picture" of the world that each eye delivers to the brain’.

So if our eyes are looking at different parts of the same word, thereby receiving different information from each eye, how is it that we are able to see the words clearly enough to read them? There are two ways the brain can do this; either the image from one of the eyes is blocked or the two different images are somehow fused together. To test how the latter mechanism might work, the team chose words that could easily split in two, such as cowboy, and presented half of the word to the left eye, and half to the right eye separately. They then analysed readers’ eye movements when reading sentences containing these particular words presented in this way.

‘We were able to clearly show that we experience a single, very clear and crisp visual representation due to fusion of the two different images from each eye,’ he explained. ‘Also when we decide which word to look at next we work out how far to move our eyes based on the fused visual representation built from the disparate signals of each eye.’

‘A comprehensive understanding of the psychological processes underlying reading is vital if we are to develop better methods of teaching children to read and offer remedial treatments for those with reading disorders such as dyslexia. Our team are now measuring the range of visual disparities over which both adult and child readers can successfully fuse words.’

Professor Simon Liversedge will give his talk, ‘What our eyes get up to while we read’ as part of the session entitled ‘What eye movements tell us about the brain and language’ on 14 September at Vanbrugh V/045, University of York as part of the BA Festival of Science.

The BA Festival of Science will be in York from 9-15 September, bringing over 350 of the UK’s top scientists and engineers to discuss the latest developments in science with the public. In addition to talks and debates at the University of York, there will be a host of events throughout the city.

For further information about the BA Festival of Science, including an online programme, visit www.the-ba.net/festivalofscience.

This year’s BA Festival of Science is organised by the BA (British Association for the Advancement of Science) in partnership with the University of York, Science City York and the City of York Council. It is supported by the Department for Innovation, Universities and Skills, BP and Yorkshire Forward.

Lisa Hendry | alfa
Further information:
http://www.the-ba.net

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>