Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic Background to Severe Urinary Tract Infections

05.09.2007
If you sit on cold boulders or forget to wear your woollen underwear, you can develop a urinary tract infection. However, these diseases are more complicated than this, and in some cases they have a genetic background.

Scientists at Lund University in Sweden have found a gene that appears to lie behind many of the most severe urinary tract infections. The study is published on September 5 in the online, open-access journal PLoS ONE.

It is well known that certain people have a tendency to develop urinary tract infections again and again. These infections often start in childhood. In serious cases they can lead to infections of the renal pelvis, which ultimately can damage the kidneys so severely that the patient will need dialysis or a kidney transplant.

Doctors have long been hoping for a method for early detection of the small group of people who are in the risk zone for renal pelvis infections. If they could single them out early, it would be unnecessary to subject all children who get a urinary tract infection to a thorough and sometimes unpleasant examination. Instead, such examinations and any preventative treatment could be reserved for those who really need it.

"Many research teams have long been looking for a genetic background to the disease. We have found a gene that could be used as a risk marker and a method for singling out the susceptible group," says researcher Ann-Charlotte Lundstedt and Professor Catharina Svanborg.

The gene in question produces a protein that is involved in the immune defence system. It regulates the migration of white blood corpuscles to the kidneys and their work with neutralizing infectious bacteria. The Lund team has previously shown that the gene protects against renal pelvis inflammation in animal experiments. Now, in studies of children and adults with recurrent renal pelvis infections, they have also shown that mutations of this very gene are much more common in kidney patients than in healthy control individuals.

"We also saw that even patients without genetic changes have low levels of this protein. Therefore, a combination of a genetic examinations and a protein measurement could be a good way to find those who are most clearly in the risk zone," says Catharina Svanborg.

Andrew Hyde | alfa
Further information:
http://www.plosone.org/doi/pone.0000825

More articles from Health and Medicine:

nachricht Finnish research group discovers a new immune system regulator
23.02.2018 | University of Turku

nachricht Minimising risks of transplants
22.02.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>