Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Radiation and drug combo helps boost efficacy of lung cancer treatment

04.09.2007
Combining radiation therapy with a drug that helps destroy blood vessels nourishing malignant tumors has been shown in mice to be significantly more effective in treating lung cancer than either approach alone, researchers at UT Southwestern Medical Center have found.

The study, involving human lung-cancer cells implanted in mice, appears in the Sept. 1 issue of Clinical Cancer Research.

In the study, Dr. Philip Thorpe, professor of pharmacology at UT Southwestern, and his colleagues found that radiation generates a chemical reaction in the membranes of endothelial cells, which line the blood vessels that feed tumors. The reaction causes membrane components called anionic phospholipids to flip inside out, exposing them. In normal blood vessels, they face the interior of the cell.

Dr. Thorpe’s previous research has shown that anionic phospholipids, particularly one called phosphatidylserine, are already flipped inside-out on tumor endothelial cells.

“The flipping is likely due to stress conditions present in the tumor micro-environment, and radiation increases the number of exposed phospholipids,” said Dr. Thorpe.

Once they induced more flipping with radiation, the researchers administered bavituximab, a monoclonal antibody that homes in on tumor vessels by selectively binding to the inside out phospholipids. The binding signals white blood cells from the immune system to attack and destroy the vessels feeding the tumor.

In their study of mice, the researchers found that radiation increased the percentage of phospholipids that flip inside out from 4 percent to 26 percent. Treating the mice with bavituximab and radiation therapy together reduced tumor growth by 80 percent and was more effective than administering either treatment by itself.

“About 30 percent of all lung-cancer patients receive radiation and, in this animal model of lung cancer, we found that this monoclonal anitbody improves the efficacy of radiation therapy without the toxicity seen in other chemotherapeutic drugs,” said Dr. Thorpe. “It’s a win-win.”

Bavituximab was created in Dr. Thorpe’s lab is currently being tested in clinical trials in the U.S. and India for its effectiveness against solid-tumor cancers.

Peregrine Pharmaceuticals Inc. has exclusively licensed bavituximab from UT Southwestern and has a sponsored research agreement to further explore clinical uses of the drug. Dr. Thorpe is a consultant to and has an equity interest in the company.

Lung cancer is the leading cause of cancer death in the U.S. About 213,000 cases of lung cancer will be diagnosed this year and 160,000 people are expected to die from the disease, according to the National Cancer Institute. “Although there are current therapies, the five-year survival rate for lung-cancer patients remains at only 15 percent,”

Dr. Thorpe said. “This tells us that there is an urgent need to develop new treatment strategies.” Vascular targeting agents such as bavituximab kill tumors without causing damage to surrounding healthy tissue. They cause fewer side effects than conventional cancer drugs that kill rapidly dividing normal cells along with the cancer cells.

Because Peregrine is already testing bavituximab in cancer patients, Dr. Thorpe said he expects new clinical trials using a combination of bavituximab and radiation therapy to start soon.

Connie Piloto | EurekAlert!
Further information:
http://www.utsouthwestern.edu/home/news/index.html

More articles from Health and Medicine:

nachricht Penn vet research identifies new target for taming Ebola
12.01.2017 | University of Pennsylvania

nachricht The strange double life of Dab2
10.01.2017 | University of Miami Miller School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>