Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Radiation and drug combo helps boost efficacy of lung cancer treatment

04.09.2007
Combining radiation therapy with a drug that helps destroy blood vessels nourishing malignant tumors has been shown in mice to be significantly more effective in treating lung cancer than either approach alone, researchers at UT Southwestern Medical Center have found.

The study, involving human lung-cancer cells implanted in mice, appears in the Sept. 1 issue of Clinical Cancer Research.

In the study, Dr. Philip Thorpe, professor of pharmacology at UT Southwestern, and his colleagues found that radiation generates a chemical reaction in the membranes of endothelial cells, which line the blood vessels that feed tumors. The reaction causes membrane components called anionic phospholipids to flip inside out, exposing them. In normal blood vessels, they face the interior of the cell.

Dr. Thorpe’s previous research has shown that anionic phospholipids, particularly one called phosphatidylserine, are already flipped inside-out on tumor endothelial cells.

“The flipping is likely due to stress conditions present in the tumor micro-environment, and radiation increases the number of exposed phospholipids,” said Dr. Thorpe.

Once they induced more flipping with radiation, the researchers administered bavituximab, a monoclonal antibody that homes in on tumor vessels by selectively binding to the inside out phospholipids. The binding signals white blood cells from the immune system to attack and destroy the vessels feeding the tumor.

In their study of mice, the researchers found that radiation increased the percentage of phospholipids that flip inside out from 4 percent to 26 percent. Treating the mice with bavituximab and radiation therapy together reduced tumor growth by 80 percent and was more effective than administering either treatment by itself.

“About 30 percent of all lung-cancer patients receive radiation and, in this animal model of lung cancer, we found that this monoclonal anitbody improves the efficacy of radiation therapy without the toxicity seen in other chemotherapeutic drugs,” said Dr. Thorpe. “It’s a win-win.”

Bavituximab was created in Dr. Thorpe’s lab is currently being tested in clinical trials in the U.S. and India for its effectiveness against solid-tumor cancers.

Peregrine Pharmaceuticals Inc. has exclusively licensed bavituximab from UT Southwestern and has a sponsored research agreement to further explore clinical uses of the drug. Dr. Thorpe is a consultant to and has an equity interest in the company.

Lung cancer is the leading cause of cancer death in the U.S. About 213,000 cases of lung cancer will be diagnosed this year and 160,000 people are expected to die from the disease, according to the National Cancer Institute. “Although there are current therapies, the five-year survival rate for lung-cancer patients remains at only 15 percent,”

Dr. Thorpe said. “This tells us that there is an urgent need to develop new treatment strategies.” Vascular targeting agents such as bavituximab kill tumors without causing damage to surrounding healthy tissue. They cause fewer side effects than conventional cancer drugs that kill rapidly dividing normal cells along with the cancer cells.

Because Peregrine is already testing bavituximab in cancer patients, Dr. Thorpe said he expects new clinical trials using a combination of bavituximab and radiation therapy to start soon.

Connie Piloto | EurekAlert!
Further information:
http://www.utsouthwestern.edu/home/news/index.html

More articles from Health and Medicine:

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

nachricht Prospect for more effective treatment of nerve pain
20.02.2017 | Universität Zürich

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>