Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Fat: An active player in the regulation of many processes in health and disease

Why should we be interested in doing obesity-related research? Emphasis is put on this type of research simply because of the fact that the epidemiological data and predictions are alarming.

Worldwide it is estimated that one person in every eight is overweight and more than 300 millions are obese. For a definition of overweight and obesity see Table 1 at the end of the press release.

Data collected by the International Obesity TaskForce (IOTF; see also and by the WHO (see also: suggests that more than half of the population in the European Union (EU) is overweight. According to the IOTF in Austria one person in three is overweight and one person in five is obese.

It is predicted that the incidence of obesity will double in the next four decades in Europe. Adding to the alarming situation is the observation that in all countries where surveys have been performed, the numbers of overweight and obese children have increased dramatically. It is predicted that in the EU 26 million schoolchildren will be overweight by the year 2010 of which 6 million will be obese. By that time these numbers will grow annually by 1.3 million and 0.3 million, respectively.

Obesity does not only mean a loss of quality of life for the affected person but also increases the risk of suffering from other diseases such as cardiovascular disease, certain cancers, diabetes, liver malfunction and orthopedic dysfunction. Our research focus is on studying the link between obesity and cardiovascular disease in general and atherosclerosis in particular. It is well known now, that obese individuals are at higher risk of developing cardiovascular diseases and several studies suggest obesity as an independent risk factor.

Adipose tissue is no longer seen merely as a mostly passive energy storage organ but is now also considered to be an active endocrine tissue that by producing a variety of cytokines, hormones and other proteins impacts on a multitude of physiological and pathophysiological processes in the human body. The adipocyte, whose size and numbers are increased in obesity, is the cellular factory that produces these proteins termed adipokines. We have cultured adipocytes from human adipose tissue and used them as a model to study effects of inflammatory mediators on the production of various adipokines by these cells.

The rationale behind this approach is based on the notion that obesity is associated with a state of chronic inflammation, which is in contrast to acute inflammation, which is in most cases a life-saving defence reaction of the body against infection that leads to tissue damage and destruction. Such tissue damage is thought to be the initiating event in the development of atherosclerotic blood vessels.

By using this approach we were the first to show that certain inflammatory mediators increase the production of two key adipokines, namely plasminogen activator inhibitor type-1 (PAI-1) and vascular endothelial growth factor (VEGF) by adipocytes. PAI-1 is a prothrombotic protein that promotes the development of blood clots. The development of such clots in atherosclerotic blood vessels is a key event in cardiovascular diseases such as myocardial infarction. Thus we believe that through these findings we have established a link between inflammation, adipose tissue and the development of cardiovascular disease.

VEGF is a protein, which induces the growth of new blood vessels. It is believed that adipose tissue, when it increases in mass, needs additional blood vessels to secure its supply with nutrients and oxygen. In fact, in mice it has been shown that blockade of VEGF leads to a decrease in adipose tissue mass in these animals. We were able to show in mice, for the first time, that inflammatory mediators injected into these animals led to increased blood vessel growth in adipose tissue. Such increase in blood vessel density in adipose tissue would then in turn result in better supply with oxygen and nutrients and could ultimately lead to growth of adipose tissue.

In conclusion we suggest that knowledge of regulatory mechanisms, which impact on the production of adipokines and on adipose tissue development and growth is instrumental to develop and improve strategies for combating not only obesity but also cardiovascular disease.

This study was presented at the ESC Congress 2007 in Vienna.

ESC Press Office | alfa
Further information:

More articles from Health and Medicine:

nachricht Advanced analysis of brain structure shape may track progression to Alzheimer's disease
26.10.2016 | Massachusetts General Hospital

nachricht Indian roadside refuse fires produce toxic rainbow
26.10.2016 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>