Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fat: An active player in the regulation of many processes in health and disease

04.09.2007
Why should we be interested in doing obesity-related research? Emphasis is put on this type of research simply because of the fact that the epidemiological data and predictions are alarming.

Worldwide it is estimated that one person in every eight is overweight and more than 300 millions are obese. For a definition of overweight and obesity see Table 1 at the end of the press release.

Data collected by the International Obesity TaskForce (IOTF; see also http://www.iotf.org/database/index.asp) and by the WHO (see also: http://www.who.int/bmi/index.jsp) suggests that more than half of the population in the European Union (EU) is overweight. According to the IOTF in Austria one person in three is overweight and one person in five is obese.

It is predicted that the incidence of obesity will double in the next four decades in Europe. Adding to the alarming situation is the observation that in all countries where surveys have been performed, the numbers of overweight and obese children have increased dramatically. It is predicted that in the EU 26 million schoolchildren will be overweight by the year 2010 of which 6 million will be obese. By that time these numbers will grow annually by 1.3 million and 0.3 million, respectively.

Obesity does not only mean a loss of quality of life for the affected person but also increases the risk of suffering from other diseases such as cardiovascular disease, certain cancers, diabetes, liver malfunction and orthopedic dysfunction. Our research focus is on studying the link between obesity and cardiovascular disease in general and atherosclerosis in particular. It is well known now, that obese individuals are at higher risk of developing cardiovascular diseases and several studies suggest obesity as an independent risk factor.

Adipose tissue is no longer seen merely as a mostly passive energy storage organ but is now also considered to be an active endocrine tissue that by producing a variety of cytokines, hormones and other proteins impacts on a multitude of physiological and pathophysiological processes in the human body. The adipocyte, whose size and numbers are increased in obesity, is the cellular factory that produces these proteins termed adipokines. We have cultured adipocytes from human adipose tissue and used them as a model to study effects of inflammatory mediators on the production of various adipokines by these cells.

The rationale behind this approach is based on the notion that obesity is associated with a state of chronic inflammation, which is in contrast to acute inflammation, which is in most cases a life-saving defence reaction of the body against infection that leads to tissue damage and destruction. Such tissue damage is thought to be the initiating event in the development of atherosclerotic blood vessels.

By using this approach we were the first to show that certain inflammatory mediators increase the production of two key adipokines, namely plasminogen activator inhibitor type-1 (PAI-1) and vascular endothelial growth factor (VEGF) by adipocytes. PAI-1 is a prothrombotic protein that promotes the development of blood clots. The development of such clots in atherosclerotic blood vessels is a key event in cardiovascular diseases such as myocardial infarction. Thus we believe that through these findings we have established a link between inflammation, adipose tissue and the development of cardiovascular disease.

VEGF is a protein, which induces the growth of new blood vessels. It is believed that adipose tissue, when it increases in mass, needs additional blood vessels to secure its supply with nutrients and oxygen. In fact, in mice it has been shown that blockade of VEGF leads to a decrease in adipose tissue mass in these animals. We were able to show in mice, for the first time, that inflammatory mediators injected into these animals led to increased blood vessel growth in adipose tissue. Such increase in blood vessel density in adipose tissue would then in turn result in better supply with oxygen and nutrients and could ultimately lead to growth of adipose tissue.

In conclusion we suggest that knowledge of regulatory mechanisms, which impact on the production of adipokines and on adipose tissue development and growth is instrumental to develop and improve strategies for combating not only obesity but also cardiovascular disease.

Reference:
This study was presented at the ESC Congress 2007 in Vienna.

ESC Press Office | alfa
Further information:
http://www.escardio.org

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>