Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fat: An active player in the regulation of many processes in health and disease

04.09.2007
Why should we be interested in doing obesity-related research? Emphasis is put on this type of research simply because of the fact that the epidemiological data and predictions are alarming.

Worldwide it is estimated that one person in every eight is overweight and more than 300 millions are obese. For a definition of overweight and obesity see Table 1 at the end of the press release.

Data collected by the International Obesity TaskForce (IOTF; see also http://www.iotf.org/database/index.asp) and by the WHO (see also: http://www.who.int/bmi/index.jsp) suggests that more than half of the population in the European Union (EU) is overweight. According to the IOTF in Austria one person in three is overweight and one person in five is obese.

It is predicted that the incidence of obesity will double in the next four decades in Europe. Adding to the alarming situation is the observation that in all countries where surveys have been performed, the numbers of overweight and obese children have increased dramatically. It is predicted that in the EU 26 million schoolchildren will be overweight by the year 2010 of which 6 million will be obese. By that time these numbers will grow annually by 1.3 million and 0.3 million, respectively.

Obesity does not only mean a loss of quality of life for the affected person but also increases the risk of suffering from other diseases such as cardiovascular disease, certain cancers, diabetes, liver malfunction and orthopedic dysfunction. Our research focus is on studying the link between obesity and cardiovascular disease in general and atherosclerosis in particular. It is well known now, that obese individuals are at higher risk of developing cardiovascular diseases and several studies suggest obesity as an independent risk factor.

Adipose tissue is no longer seen merely as a mostly passive energy storage organ but is now also considered to be an active endocrine tissue that by producing a variety of cytokines, hormones and other proteins impacts on a multitude of physiological and pathophysiological processes in the human body. The adipocyte, whose size and numbers are increased in obesity, is the cellular factory that produces these proteins termed adipokines. We have cultured adipocytes from human adipose tissue and used them as a model to study effects of inflammatory mediators on the production of various adipokines by these cells.

The rationale behind this approach is based on the notion that obesity is associated with a state of chronic inflammation, which is in contrast to acute inflammation, which is in most cases a life-saving defence reaction of the body against infection that leads to tissue damage and destruction. Such tissue damage is thought to be the initiating event in the development of atherosclerotic blood vessels.

By using this approach we were the first to show that certain inflammatory mediators increase the production of two key adipokines, namely plasminogen activator inhibitor type-1 (PAI-1) and vascular endothelial growth factor (VEGF) by adipocytes. PAI-1 is a prothrombotic protein that promotes the development of blood clots. The development of such clots in atherosclerotic blood vessels is a key event in cardiovascular diseases such as myocardial infarction. Thus we believe that through these findings we have established a link between inflammation, adipose tissue and the development of cardiovascular disease.

VEGF is a protein, which induces the growth of new blood vessels. It is believed that adipose tissue, when it increases in mass, needs additional blood vessels to secure its supply with nutrients and oxygen. In fact, in mice it has been shown that blockade of VEGF leads to a decrease in adipose tissue mass in these animals. We were able to show in mice, for the first time, that inflammatory mediators injected into these animals led to increased blood vessel growth in adipose tissue. Such increase in blood vessel density in adipose tissue would then in turn result in better supply with oxygen and nutrients and could ultimately lead to growth of adipose tissue.

In conclusion we suggest that knowledge of regulatory mechanisms, which impact on the production of adipokines and on adipose tissue development and growth is instrumental to develop and improve strategies for combating not only obesity but also cardiovascular disease.

Reference:
This study was presented at the ESC Congress 2007 in Vienna.

ESC Press Office | alfa
Further information:
http://www.escardio.org

More articles from Health and Medicine:

nachricht Chances to treat childhood dementia
24.07.2017 | Julius-Maximilians-Universität Würzburg

nachricht World first: Massive thrombosis removed during early pregnancy
20.07.2017 | Universitätsspital Bern

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

Ultrathin device harvests electricity from human motion

24.07.2017 | Power and Electrical Engineering

Scientists announce the quest for high-index materials

24.07.2017 | Materials Sciences

ADIR Project: Lasers Recover Valuable Materials

24.07.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>