Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Pancreatic cancer fights off immune attack

Scientists of the German Cancer Research Center (Deutsches Krebsforschungszentrum) and the Heidelberg University Hospitals have discovered that pancreatic cancer attracts regulatory T cells, which suppress the activity of immune cells. In this way, the tumor might escape its destruction by the immune system.

The ability to discriminate between friend and foe or between “self“ and “foreign” is vital for a functioning immune system. There are numerous protective mechanisms at work to save the body’s own tissue from attacks by misguided immune cells. A pivotal role is played by regulatory T cells (Treg cells), which prevent immune reactions against the body’s own structures by suppressing the aggressiveness of particular immune cells called T helper cells.

Malignant tumors actively attract Treg cells and, thus, slow down immune defense to protect themselves against elimination. This is suggested by results just published by Associate Professor Dr. Philipp Beckhove jointly with colleagues from the German Cancer Research Center in collaboration with Professor Jürgen Weitz, Dr. Hubertus Schmitz-Winnenthal and other colleagues from the Heidelberg University Hospitals.

In tissue samples of pancreatic cancer the researchers found a much higher number of Treg cells than in samples obtained from regions of the organ that were not affected by cancer. For other immune cells, such as T helper cells, they found no such differences.

Cells of the immune system, including regulatory T cells, are called to their site of action by specific “address molecules“ on the surface of blood vessel cells (endothelial cells). The presence of address molecules is the signal for immune cells patrolling in the bloodstream to squeeze through the vessel wall in order to enter the adjacent tissue. Beckhove and colleagues have shown that Treg cells easily pass through a layer of endothelial cells isolated from tumor tissue. If, however, the endothelial cells originate from healthy tissue, then a significantly lower number of Treg cells make their way through the layer of cells. The researchers also discovered why this is so: Endothelial cells from tumor tissue carry significantly more address molecules on their surface than vessel cells from healthy regions of the pancreas. When the investigators made these adresses invisible using specific antibodies, the Treg accumulation in the tumor tissue was stopped.

“Treatment possibilities for pancreatic carcinoma, in particular, are still insufficient. Specific antibodies preventing the accumulation of Treg cells in the tumor and, thus, strengthening immune defense, might be a useful therapeutic option,” says Phillip Beckhove to explain the relevance of these results.

The task of the Deutsches Krebsforschungszentrum in Heidelberg (German Cancer Research Center, DKFZ) is to systematically investigate the mechanisms of cancer development and to identify cancer risk factors. The results of this basic research are expected to lead to new approaches in the prevention, diagnosis and treatment of cancer. The Center is financed to 90 percent by the Federal Ministry of Education and Research and to 10 percent by the State of Baden-Wuerttemberg. It is a member of the Helmholtz Association of National Research Centers (Helmholtz-Gemeinschaft Deutscher Forschungszentren e.V.).

Press Officer | alfa
Further information:

More articles from Health and Medicine:

nachricht NIH scientists describe potential antibody treatment for multidrug-resistant K. pneumoniae
14.03.2018 | NIH/National Institute of Allergy and Infectious Diseases

nachricht Researchers identify key step in viral replication
13.03.2018 | University of Pittsburgh Schools of the Health Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>