Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research Suggests New Options in Treating Skin Pigment Problems

24.08.2007
Melanocytes are not the only cells responsible for differences in skin coloration. New research from the University of Cincinnati (UC) has shown that some of the most basic cells on the skin’s surface influence pigment production and help regulate skin coloration.

The finding offers hope for new approaches to the treatment of pigmentation disorders that leave the skin disfigured by light or dark blotches.

In a two-year, preclinical dermatological study, Raymond Boissy, PhD, and his team found that cells known as keratinocytes express certain characteristics that could control skin pigmentation.

Keratinocytes are surface skin cells that make up about 96 percent of the skin’s outer layer (epidermis). The cells give the skin structural integrity and protect the body from infection.

Melanocytes, the body’s melanin-producing cells, make up another 2 percent of the epidermis. Melanin is the chemical responsible for skin pigmentation or color.

Boissy says his team’s findings could help scientists develop new drugs that alter the physiological processes that cause pigmentation disorders such as vitiligo—white blotches that occur near the body’s orifices and joints—and melasma, a disorder characterized by dark pigmented lesions.

“We’ve isolated specific physiological properties that regulate the melanocytes’ functional abilities,” explains Boissy, UC professor of dermatology and principal investigator for the study. “This is an important discovery because many pigment diseases are the result of deregulation of the melanocyte.”

“Now we have a new set of molecules to investigate that may help create uniform skin color—both for patients with pigment disorders or serious burn wounds as well as those seeking improved cosmetic skin appearance,” he adds.

The UC-led study, published in the September issue of The FASEB Journal, is the first to identify a specific model for manipulating melanin production in the body by using keratinocytes.

Previous research has shown that keratinocytes receive “packages” of pigment granules (melanosomes) from melanocytes. In dark-skinned people, these packages are dispersed throughout the cell individually, creating a larger surface area that absorbs more light than skin cells of light-skinned people, which disperse pigment in clusters.

“This was the first clue that keratinocytes played a role in skin coloration outside of genetic factors regulating the melanocyte,” says Boissy. “Further study showed there was no informational difference between the melanosomes in keratinocytes for dark and light skin responsible for sorting within the keratinocyte. The cells sorted themselves based on ethnic background, so we wanted to learn more about the factors that influence skin pigmentation.”

For this study, Boissy and his team developed a human skin substitute model using a combination of keratinocytes and melanocytes derived from donated light and dark skin. These mixed cells were transplanted into a mouse model and allowed to grow into the skin substitute for about three months.

“We found that by transplanting keratinocytes from light-skinned individuals to bioengineered skin substitutes produced a lightening effect,” says Boissy. “The same effect resulted when keratinocytes from dark-skinned individuals were transplanted into the skin substitute, creating a darkening effect.

“Surprisingly,” he adds, “intermediate skin color was obtained when melanocytes and keratinocytes were combined from light and dark skin together”

In addition, the researchers discovered that the keratinocytes also influenced how much pigment is actually produced. Boissy says the effect is subtle, but it shows that it’s not just genetics of the melanocyte that determines skin coloration.

Collaborators in this study include Yasuko Yoshida, Akira Hachiya, PhD, Atsushi Ohuchi, Takashi Kitahara, PhD, and Yoshinori Takema, PhD, of Kao Biological Science Laboratories in Japan, and Marty Visscher, PhD of Cincinnati Children’s Hospital Research Foundation.

Boissy has no financial interest in Kao Biological Sciences Laboratories, sponsor of the study.

Amanda Harper | EurekAlert!
Further information:
http://www.uc.edu

More articles from Health and Medicine:

nachricht On track to heal leukaemia
18.01.2017 | Universitätsspital Bern

nachricht Penn vet research identifies new target for taming Ebola
12.01.2017 | University of Pennsylvania

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

How gut bacteria can make us ill

18.01.2017 | Life Sciences

On track to heal leukaemia

18.01.2017 | Health and Medicine

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>