Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Research Suggests New Options in Treating Skin Pigment Problems

Melanocytes are not the only cells responsible for differences in skin coloration. New research from the University of Cincinnati (UC) has shown that some of the most basic cells on the skin’s surface influence pigment production and help regulate skin coloration.

The finding offers hope for new approaches to the treatment of pigmentation disorders that leave the skin disfigured by light or dark blotches.

In a two-year, preclinical dermatological study, Raymond Boissy, PhD, and his team found that cells known as keratinocytes express certain characteristics that could control skin pigmentation.

Keratinocytes are surface skin cells that make up about 96 percent of the skin’s outer layer (epidermis). The cells give the skin structural integrity and protect the body from infection.

Melanocytes, the body’s melanin-producing cells, make up another 2 percent of the epidermis. Melanin is the chemical responsible for skin pigmentation or color.

Boissy says his team’s findings could help scientists develop new drugs that alter the physiological processes that cause pigmentation disorders such as vitiligo—white blotches that occur near the body’s orifices and joints—and melasma, a disorder characterized by dark pigmented lesions.

“We’ve isolated specific physiological properties that regulate the melanocytes’ functional abilities,” explains Boissy, UC professor of dermatology and principal investigator for the study. “This is an important discovery because many pigment diseases are the result of deregulation of the melanocyte.”

“Now we have a new set of molecules to investigate that may help create uniform skin color—both for patients with pigment disorders or serious burn wounds as well as those seeking improved cosmetic skin appearance,” he adds.

The UC-led study, published in the September issue of The FASEB Journal, is the first to identify a specific model for manipulating melanin production in the body by using keratinocytes.

Previous research has shown that keratinocytes receive “packages” of pigment granules (melanosomes) from melanocytes. In dark-skinned people, these packages are dispersed throughout the cell individually, creating a larger surface area that absorbs more light than skin cells of light-skinned people, which disperse pigment in clusters.

“This was the first clue that keratinocytes played a role in skin coloration outside of genetic factors regulating the melanocyte,” says Boissy. “Further study showed there was no informational difference between the melanosomes in keratinocytes for dark and light skin responsible for sorting within the keratinocyte. The cells sorted themselves based on ethnic background, so we wanted to learn more about the factors that influence skin pigmentation.”

For this study, Boissy and his team developed a human skin substitute model using a combination of keratinocytes and melanocytes derived from donated light and dark skin. These mixed cells were transplanted into a mouse model and allowed to grow into the skin substitute for about three months.

“We found that by transplanting keratinocytes from light-skinned individuals to bioengineered skin substitutes produced a lightening effect,” says Boissy. “The same effect resulted when keratinocytes from dark-skinned individuals were transplanted into the skin substitute, creating a darkening effect.

“Surprisingly,” he adds, “intermediate skin color was obtained when melanocytes and keratinocytes were combined from light and dark skin together”

In addition, the researchers discovered that the keratinocytes also influenced how much pigment is actually produced. Boissy says the effect is subtle, but it shows that it’s not just genetics of the melanocyte that determines skin coloration.

Collaborators in this study include Yasuko Yoshida, Akira Hachiya, PhD, Atsushi Ohuchi, Takashi Kitahara, PhD, and Yoshinori Takema, PhD, of Kao Biological Science Laboratories in Japan, and Marty Visscher, PhD of Cincinnati Children’s Hospital Research Foundation.

Boissy has no financial interest in Kao Biological Sciences Laboratories, sponsor of the study.

Amanda Harper | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

nachricht Breakthrough in Mapping Nicotine Addiction Could Help Researchers Improve Treatment
04.10.2016 | UT Southwestern Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>