Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research Suggests New Options in Treating Skin Pigment Problems

24.08.2007
Melanocytes are not the only cells responsible for differences in skin coloration. New research from the University of Cincinnati (UC) has shown that some of the most basic cells on the skin’s surface influence pigment production and help regulate skin coloration.

The finding offers hope for new approaches to the treatment of pigmentation disorders that leave the skin disfigured by light or dark blotches.

In a two-year, preclinical dermatological study, Raymond Boissy, PhD, and his team found that cells known as keratinocytes express certain characteristics that could control skin pigmentation.

Keratinocytes are surface skin cells that make up about 96 percent of the skin’s outer layer (epidermis). The cells give the skin structural integrity and protect the body from infection.

Melanocytes, the body’s melanin-producing cells, make up another 2 percent of the epidermis. Melanin is the chemical responsible for skin pigmentation or color.

Boissy says his team’s findings could help scientists develop new drugs that alter the physiological processes that cause pigmentation disorders such as vitiligo—white blotches that occur near the body’s orifices and joints—and melasma, a disorder characterized by dark pigmented lesions.

“We’ve isolated specific physiological properties that regulate the melanocytes’ functional abilities,” explains Boissy, UC professor of dermatology and principal investigator for the study. “This is an important discovery because many pigment diseases are the result of deregulation of the melanocyte.”

“Now we have a new set of molecules to investigate that may help create uniform skin color—both for patients with pigment disorders or serious burn wounds as well as those seeking improved cosmetic skin appearance,” he adds.

The UC-led study, published in the September issue of The FASEB Journal, is the first to identify a specific model for manipulating melanin production in the body by using keratinocytes.

Previous research has shown that keratinocytes receive “packages” of pigment granules (melanosomes) from melanocytes. In dark-skinned people, these packages are dispersed throughout the cell individually, creating a larger surface area that absorbs more light than skin cells of light-skinned people, which disperse pigment in clusters.

“This was the first clue that keratinocytes played a role in skin coloration outside of genetic factors regulating the melanocyte,” says Boissy. “Further study showed there was no informational difference between the melanosomes in keratinocytes for dark and light skin responsible for sorting within the keratinocyte. The cells sorted themselves based on ethnic background, so we wanted to learn more about the factors that influence skin pigmentation.”

For this study, Boissy and his team developed a human skin substitute model using a combination of keratinocytes and melanocytes derived from donated light and dark skin. These mixed cells were transplanted into a mouse model and allowed to grow into the skin substitute for about three months.

“We found that by transplanting keratinocytes from light-skinned individuals to bioengineered skin substitutes produced a lightening effect,” says Boissy. “The same effect resulted when keratinocytes from dark-skinned individuals were transplanted into the skin substitute, creating a darkening effect.

“Surprisingly,” he adds, “intermediate skin color was obtained when melanocytes and keratinocytes were combined from light and dark skin together”

In addition, the researchers discovered that the keratinocytes also influenced how much pigment is actually produced. Boissy says the effect is subtle, but it shows that it’s not just genetics of the melanocyte that determines skin coloration.

Collaborators in this study include Yasuko Yoshida, Akira Hachiya, PhD, Atsushi Ohuchi, Takashi Kitahara, PhD, and Yoshinori Takema, PhD, of Kao Biological Science Laboratories in Japan, and Marty Visscher, PhD of Cincinnati Children’s Hospital Research Foundation.

Boissy has no financial interest in Kao Biological Sciences Laboratories, sponsor of the study.

Amanda Harper | EurekAlert!
Further information:
http://www.uc.edu

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>