Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover noninvasive diagnostic tool for brain diseases

23.08.2007
By recording brain cells communicating, a simple test can predict Alzheimer's, other brain diseases

Researchers from the University of Minnesota Medical School and Brain Sciences Center at the Minneapolis VA Medical Center have identified a noninvasive and painless way to diagnose complex brain diseases. And it’s as simple as staring at a point of light.

The research offers promise for a less-stressful, painless, and objective diagnosis for brain diseases, as well as a way to measure the effectiveness of different treatments for these diseases. Using magnetoencephalography (MEG) to record tiny magnetic fields in the brain, the researchers recorded brain cells communicating with each other while research subjects stared at a point of light.

After applying various mathematic algorithms, the researchers were able to classify the 142 research subjects by diagnosis. Study participants fell into one of six categories, including people with Alzheimer’s disease, chronic alcoholism, schizophrenia, multiple sclerosis or Sjogren’s syndrome, as well as healthy controls.

The research, led by Apostolos P. Georgopoulos, M.D., Ph.D., professor of neuroscience, neurology, and psychiatry, will be published in the Aug. 27, 2007 issue of the Journal of Neural Engineering. “This elegantly simple test allows us to glimpse into the brain as it is working,” Georgopoulos said. “We were able to classify, with 100 percent accuracy, the various disease groups represented in the group of research subjects.” There are no good tests that measure the brain as it functions. Several tests exist to assess brain structure, but they reveal little of how the brain interacts. Currently, brain-related diseases are diagnosed with a combination of behavioral exams, psychiatric interviews, and neuropsychological testing, all which take time and can be hard on the patient, Georgopoulos said. “This discovery gives scientists and physicians another tool to assess people’s disease progression,” he said. “In the future it could be applied when studying the effect of new treatments or drug therapies.”

All behavior and cognition in the brain involves networks of nerves continuously interacting—these interactions occur on a millisecond by millisecond basis. The MEG has 248 sensors that record the interactions in the brain on a millisecond by millisecond basis, much faster than current methods of evaluation such as the functional magnetic resonance imaging (fMRI), which takes seconds to record. The measurements they recorded represent the workings of tens of thousands of brain cells.

Georgopoulos and his team were inspired to try to use the MEG as a diagnostic tool after discovering that neural interactions across human subjects were very similar. The team published on this novel way to assess the dynamic interactions of brain networks acting in synchrony in a 2006 issue of the Proceedings of the National Academy of Sciences. Now the team will continue to collect more data on the six disease groups, as well as begin to analyze research subjects with other brain diseases, including depression, post-traumatic stress disorder, autism, and Parkinson’s disease, to see if the same technique can be applied.

Sara E. Buss | EurekAlert!
Further information:
http://www.umn.edu

More articles from Health and Medicine:

nachricht 'Icebreaker' protein opens genome for t cell development, Penn researchers find
21.02.2018 | University of Pennsylvania School of Medicine

nachricht Similarities found in cancer initiation in kidney, liver, stomach, pancreas
21.02.2018 | Washington University School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Researchers invent tiny, light-powered wires to modulate brain's electrical signals

21.02.2018 | Life Sciences

The “Holy Grail” of peptide chemistry: Making peptide active agents available orally

21.02.2018 | Life Sciences

Atomic structure of ultrasound material not what anyone expected

21.02.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>