Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanoparticle Could Help Detect Many Diseases Early

22.08.2007
Georgia Tech and Emory University researchers first to image hydrogen peroxide in animals

Most people think of hydrogen peroxide as a topical germ killer, but the medicine cabinet staple is gaining steam in the medical community as an early indicator of disease in the body.

Georgia Institute of Technology and Emory University researchers are the first to create a nanoparticle capable of detecting and imaging trace amounts of hydrogen peroxide in animals. The nanoparticles, thought to be completely nontoxic, could some day be used as a simple, all-purpose diagnostic tool to detect the earliest stages of any disease that involves chronic inflammation — everything from cancer and Alzheimer’s to heart disease and arthritis.

The research, lead by the laboratories of Niren Murthy at the Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University and Dr. Robert Taylor in the Division of Cardiology at the Emory University School of Medicine, will appear in the October issue of Nature Materials and was funded by the National Science Foundation (NSF) and the National Institutes of Health (NIH).

Hydrogen peroxide is thought to be over-produced by cells at the early stages of most diseases. Because there were previously no imaging techniques available to capture this process in the body, the details of how the hydrogen peroxide is produced and its role in a developing disease must still be determined.

The Georgia Tech and Emory nanoparticles may be the key to better understanding the role of hydrogen peroxide in the progression of many diseases and later play an important diagnostic role, Murthy said.

“These nanoparticles are incredibly sensitive so you can detect nanomolar concentrations of hydrogen peroxide. That’s important because researchers aren’t yet certain what amounts of hydrogen peroxide are present in various diseases,” Murthy said.

The ultimate goal, however, is that the nanoparticles could some day be used as a simple, all-purpose diagnostic tool for most diseases. In the future, the nanoparticle would be injected by needle into a certain area of the body (for instance, the heart). If the nanoparticles encountered hydrogen peroxide, they would emit light. Should a doctor see a significant amount of light activity in the area, the doctor would know that the patient may be presenting early signs of a disease in that area of the body.

The Georgia Tech and Emory nanoparticles penetrate deep tissue and operate at a high wave length, making them sensitive indicators of the presence of hydrogen peroxide produced by any sort of inflammation.

The nanoparticle polymer is made of peroxalate esters. A fluorescent dye (pentacene) is then encapsulated into the polymer. When the nano particles bump into hydrogen peroxide, they excite the dye, which then emits photons (or light) that can be detected in a simple, photon-counting scan.

“It’s using this nanoparticle made of peroxalate esters that allows you to do this three component reaction in vivo. If you were to inject a peroxalate ester and a dye, they would go their own ways once in the body. With the nanoparticles, we can sequester both of these reagents within nanometers of each other, in vivo,” Murthy said.

The goal was to maximize the wavelength of the particles. Wavelength determines the sensitivity in vivo. And if the particle’s wavelength is high enough, it can penetrate the skin and display clearly on a scan.

The research team started with a nanoparticle that was made of dye and filled with peroxide esthers. They later realized that the reverse (a particle made of peroxalate esters and filled with dye) was more effective at imaging hydrogen peroxide, Murthy said.

The group will conduct further tests with the nanoparticles to confirm their safety and effectiveness.

The Georgia Institute of Technology is one of the nation's premiere research universities. Ranked eighth among U.S. News & World Report's top public universities, Georgia Tech's 17,000 students are enrolled in its Colleges of Architecture, Computing, Engineering, Liberal Arts, Management and Sciences. Tech is among the nation's top producers of women and African-American engineers. The Institute offers research opportunities to both undergraduate and graduate students and is home to more than 100 interdisciplinary units plus the Georgia Tech Research Institute.

Megan McRainey | EurekAlert!
Further information:
http://www.nature.com/nmat/index.html
http://www.bme.gatech.edu

More articles from Health and Medicine:

nachricht Satellites, airport visibility readings shed light on troops' exposure to air pollution
09.12.2016 | Veterans Affairs Research Communications

nachricht Oxygen can wake up dormant bacteria for antibiotic attacks
08.12.2016 | Penn State

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>