Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New hope for Huntington's sufferers

22.08.2007
A major breakthrough in the understanding and potential treatment of Huntington's disease has been made by scientists at the University of Leeds.

Researchers in the University’s Faculty of Biological Sciences have discovered that one of the body's naturally occurring proteins is preventing 57 genes from operating normally in the brains of Huntington's sufferers. In addition, the destructive nature of this protein could potentially be halted using drugs that are already being used to help cancer patients.

“This is a really exciting breakthrough,” says researcher Dr Lezanne Ooi. “It's early days, but we believe our research could lead to radical changes in treatment for Huntington's sufferers. The fact that these cancer drugs have already been through the clinical trials process should speed up the time it takes for this research to impact directly on patients.”

Huntington's is an inherited degenerative neurological disease that affects between 6500 and 8000 people in the UK and up to 8 people out of every 100,000 in Western countries. Any person whose parent has Huntington's has a 50-50 chance of inheriting the faulty gene that causes it and everyone with the defective gene will, at some point, develop the disease.

It is characterised by a loss of neurons in certain regions of the brain and progressively affects a sufferer’s cognition, personality and motor skills. In its later stages, sufferers almost certainly require continual nursing care. Secondary diseases, such as pneumonia are the actual cause of death, rather than the disease itself.

Dr Ooi's research has identified the effects of one of the body's proteins on the neurons of Huntington's sufferers. Neurons are usually protected by the protein BDNF (brain derived neurotrophic factor), whose many functions also include encouraging the growth and differentiation of new neurons and synapses. However, in Huntington’s sufferers, the repressor protein known as REST - which is usually found only in certain regions of the brain – enters the nucleus of the neuron and decreases the expression of BDNF.

She has also been studying some of the enzymes which assist the function of this protein. It is these enzymes that provide the mechanism for the protein to wreak havoc in the brains of Huntington's sufferers, and that are already being targeted in certain cancer drugs.

Currently, the symptoms of Huntington's can be managed through medication to help with loss of motor control and speech therapy but there is no definitive treatment. This research provides a first step in developing a treatment regime that may halt the onset of the disease.

“Huntington’s is a devastating illness that affects whole families. Those who know they’ve inherited the faulty gene live in a shadow of uncertainty over how long their symptoms start to develop. It can also be particularly cruel since every child born to a parent that has the HD gene is at 50% risk of having inherited the gene,” says Cath Stanley, Head of Care Services at the Huntington’s Disease Association.

“As such, any developments in the understanding of this disease are welcome, but this breakthrough is particularly exciting as it opens up an avenue for researching a possible treatment using drugs that are already available, rather than starting from scratch.”

Dr Ooi's research was funded by The Wellcome Trust and carried out in collaboration with the University of Milan and King's College London. The paper has been published in the Journal of Neuroscience.

Clare Elsley | alfa
Further information:
http://reporter.leeds.ac.uk/press_releases/current/huntington.htm

More articles from Health and Medicine:

nachricht Electrical 'switch' in brain's capillary network monitors activity and controls blood flow
27.03.2017 | Larner College of Medicine at the University of Vermont

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>