Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New hope for Huntington's sufferers

22.08.2007
A major breakthrough in the understanding and potential treatment of Huntington's disease has been made by scientists at the University of Leeds.

Researchers in the University’s Faculty of Biological Sciences have discovered that one of the body's naturally occurring proteins is preventing 57 genes from operating normally in the brains of Huntington's sufferers. In addition, the destructive nature of this protein could potentially be halted using drugs that are already being used to help cancer patients.

“This is a really exciting breakthrough,” says researcher Dr Lezanne Ooi. “It's early days, but we believe our research could lead to radical changes in treatment for Huntington's sufferers. The fact that these cancer drugs have already been through the clinical trials process should speed up the time it takes for this research to impact directly on patients.”

Huntington's is an inherited degenerative neurological disease that affects between 6500 and 8000 people in the UK and up to 8 people out of every 100,000 in Western countries. Any person whose parent has Huntington's has a 50-50 chance of inheriting the faulty gene that causes it and everyone with the defective gene will, at some point, develop the disease.

It is characterised by a loss of neurons in certain regions of the brain and progressively affects a sufferer’s cognition, personality and motor skills. In its later stages, sufferers almost certainly require continual nursing care. Secondary diseases, such as pneumonia are the actual cause of death, rather than the disease itself.

Dr Ooi's research has identified the effects of one of the body's proteins on the neurons of Huntington's sufferers. Neurons are usually protected by the protein BDNF (brain derived neurotrophic factor), whose many functions also include encouraging the growth and differentiation of new neurons and synapses. However, in Huntington’s sufferers, the repressor protein known as REST - which is usually found only in certain regions of the brain – enters the nucleus of the neuron and decreases the expression of BDNF.

She has also been studying some of the enzymes which assist the function of this protein. It is these enzymes that provide the mechanism for the protein to wreak havoc in the brains of Huntington's sufferers, and that are already being targeted in certain cancer drugs.

Currently, the symptoms of Huntington's can be managed through medication to help with loss of motor control and speech therapy but there is no definitive treatment. This research provides a first step in developing a treatment regime that may halt the onset of the disease.

“Huntington’s is a devastating illness that affects whole families. Those who know they’ve inherited the faulty gene live in a shadow of uncertainty over how long their symptoms start to develop. It can also be particularly cruel since every child born to a parent that has the HD gene is at 50% risk of having inherited the gene,” says Cath Stanley, Head of Care Services at the Huntington’s Disease Association.

“As such, any developments in the understanding of this disease are welcome, but this breakthrough is particularly exciting as it opens up an avenue for researching a possible treatment using drugs that are already available, rather than starting from scratch.”

Dr Ooi's research was funded by The Wellcome Trust and carried out in collaboration with the University of Milan and King's College London. The paper has been published in the Journal of Neuroscience.

Clare Elsley | alfa
Further information:
http://reporter.leeds.ac.uk/press_releases/current/huntington.htm

More articles from Health and Medicine:

nachricht New 3-D imaging reveals how human cell nucleus organizes DNA and chromatin of its genome
28.07.2017 | University of California - San Diego

nachricht Malaria Already Endemic in the Mediterranean by the Roman Period
27.07.2017 | Universität Zürich

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Abrupt motion sharpens x-ray pulses

Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

New 3-D imaging reveals how human cell nucleus organizes DNA and chromatin of its genome

28.07.2017 | Health and Medicine

Heavy metals in water meet their match

28.07.2017 | Power and Electrical Engineering

Oestrogen regulates pathological changes of bones via bone lining cells

28.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>