Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Weizmann Institute Scientists discover: A Survival Mechanism for Blood Cancer Cells

21.08.2007
A Weizmann Institute scientist and her research team have discovered a mechanism that helps cancer cells in a type of leukemia to survive. The scientists showed how an antibody, which may soon enter clinical trials for the leukemia, can block a key protein, causing the cancer cells to die.

Chronic Lymphocytic Leukemia is a type of blood cancer in which specific white blood cells, called B lymphocytes or B cells, build up in the blood, bone marrow and lymph nodes. The lifespan of a normal B cell is limited by an internal self-destruct program but, in cancer cells, this mechanism breaks down. B cells that don't self-destruct can live on to multiply and eventually accumulate in dangerous amounts.

A team of scientists headed by Prof. Idit Shachar of the Weizmann Institute's Immunology Department and Dr. Michal Haran of the Hematology Institute of the Kaplan Medical Center recently discovered what makes these cancer cells stay alive. They then launched a targeted attack on the survival mechanism they discovered and succeeded to significantly raise cancer cell mortality rates. Their findings, which appeared recently in Proceedings of the National Academy of Sciences (PNAS), may lead to future treatments for this disease, as well as for other diseases in which B lymphocytes accumulate in the blood.

In previous research, Shachar had found that a specific receptor - a protein on the outer surface of healthy B cells - fulfills a crucial role in helping these cells to survive. She wondered if the same protein might also be a central player in the abnormally high survival rates of cancerous B cells.

Members of Shachar's research team, including Inbal Binsky, Diana Starlets, Yael Gore and Frida Lantner, together Kaplan Medical Center doctors Haran, Lev Shvidel, Prof. Alan Berrebi and Nurit Harpaz, scientists from Yale University and David Goldenberg of the Garden State Cancer Center in New Jersey, examined B cells taken from chronic lymphocytic leukemia patients. They discovered that, even in the earliest stages of the disease, these cells have an unusually high level of both the survival receptor and another protein that binds to the receptor. The scientists found that this protein, in binding to the receptor, initiates a series of events within the cell that leads to enhanced cell survival capabilities. For instance, in one of these events, a substance is produced that helps to regulate the cells' lifespan. This substance causes another protein to be produced, which then prevents the self-destruct program from being activated.

The team treated the chronic lymphocytic leukemia cells with an antibody that attached to the survival receptor, blocking its activity and causing the cancer cell death rate to soar.

The antibodies they used are produced by the firm Immunomedics, in New Jersey, and are currently entering clinical trials for the treatment of several different types of cancer. Following this research, which has revealed the mechanism for the antibody's actions, the company is planning trials for chronic lymphocytic leukemia, as well.

Shachar: 'The abnormally elevated levels of this receptor seem to be important factors in the development of this disease, right from the beginning, and they are responsible for the longevity of these cancerous B cells. Blocking the receptor or other stages in the pathway they activate might be a winning tactic, in the future, in the war against cancers involving B cells.'

Prof. Idit Shachar's research is supported by the Weizmann Institute of Science-Yale Exchange Program; the Abisch Frenkel Foundation for the Promotion of Life Sciences, Switzerland; and Mr. Joe Gurwin, New York, NY. Prof. Shachar is the incumbent of the Dr. Morton and Anne Kleiman Professorial Chair.

The Weizmann Institute of Science in Rehovot, Israel, is one of the world's top-ranking multidisciplinary research institutions. Noted for its wide-ranging exploration of the natural and exact sciences, the Institute is home to 2,600 scientists, students, technicians and supporting staff. Institute research efforts include the search for new ways of fighting disease and hunger, examining leading questions in mathematics and computer science, probing the physics of matter and the universe, creating novel materials and developing new strategies for protecting the environment.

Yivsam Azgad | idw
Further information:
http://wis-wander.weizmann.ac.il

More articles from Health and Medicine:

nachricht Investigators may unlock mystery of how staph cells dodge the body's immune system
22.09.2017 | Cedars-Sinai Medical Center

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>