Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Weizmann Institute Scientists discover: A Survival Mechanism for Blood Cancer Cells

21.08.2007
A Weizmann Institute scientist and her research team have discovered a mechanism that helps cancer cells in a type of leukemia to survive. The scientists showed how an antibody, which may soon enter clinical trials for the leukemia, can block a key protein, causing the cancer cells to die.

Chronic Lymphocytic Leukemia is a type of blood cancer in which specific white blood cells, called B lymphocytes or B cells, build up in the blood, bone marrow and lymph nodes. The lifespan of a normal B cell is limited by an internal self-destruct program but, in cancer cells, this mechanism breaks down. B cells that don't self-destruct can live on to multiply and eventually accumulate in dangerous amounts.

A team of scientists headed by Prof. Idit Shachar of the Weizmann Institute's Immunology Department and Dr. Michal Haran of the Hematology Institute of the Kaplan Medical Center recently discovered what makes these cancer cells stay alive. They then launched a targeted attack on the survival mechanism they discovered and succeeded to significantly raise cancer cell mortality rates. Their findings, which appeared recently in Proceedings of the National Academy of Sciences (PNAS), may lead to future treatments for this disease, as well as for other diseases in which B lymphocytes accumulate in the blood.

In previous research, Shachar had found that a specific receptor - a protein on the outer surface of healthy B cells - fulfills a crucial role in helping these cells to survive. She wondered if the same protein might also be a central player in the abnormally high survival rates of cancerous B cells.

Members of Shachar's research team, including Inbal Binsky, Diana Starlets, Yael Gore and Frida Lantner, together Kaplan Medical Center doctors Haran, Lev Shvidel, Prof. Alan Berrebi and Nurit Harpaz, scientists from Yale University and David Goldenberg of the Garden State Cancer Center in New Jersey, examined B cells taken from chronic lymphocytic leukemia patients. They discovered that, even in the earliest stages of the disease, these cells have an unusually high level of both the survival receptor and another protein that binds to the receptor. The scientists found that this protein, in binding to the receptor, initiates a series of events within the cell that leads to enhanced cell survival capabilities. For instance, in one of these events, a substance is produced that helps to regulate the cells' lifespan. This substance causes another protein to be produced, which then prevents the self-destruct program from being activated.

The team treated the chronic lymphocytic leukemia cells with an antibody that attached to the survival receptor, blocking its activity and causing the cancer cell death rate to soar.

The antibodies they used are produced by the firm Immunomedics, in New Jersey, and are currently entering clinical trials for the treatment of several different types of cancer. Following this research, which has revealed the mechanism for the antibody's actions, the company is planning trials for chronic lymphocytic leukemia, as well.

Shachar: 'The abnormally elevated levels of this receptor seem to be important factors in the development of this disease, right from the beginning, and they are responsible for the longevity of these cancerous B cells. Blocking the receptor or other stages in the pathway they activate might be a winning tactic, in the future, in the war against cancers involving B cells.'

Prof. Idit Shachar's research is supported by the Weizmann Institute of Science-Yale Exchange Program; the Abisch Frenkel Foundation for the Promotion of Life Sciences, Switzerland; and Mr. Joe Gurwin, New York, NY. Prof. Shachar is the incumbent of the Dr. Morton and Anne Kleiman Professorial Chair.

The Weizmann Institute of Science in Rehovot, Israel, is one of the world's top-ranking multidisciplinary research institutions. Noted for its wide-ranging exploration of the natural and exact sciences, the Institute is home to 2,600 scientists, students, technicians and supporting staff. Institute research efforts include the search for new ways of fighting disease and hunger, examining leading questions in mathematics and computer science, probing the physics of matter and the universe, creating novel materials and developing new strategies for protecting the environment.

Yivsam Azgad | idw
Further information:
http://wis-wander.weizmann.ac.il

More articles from Health and Medicine:

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>