Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Weizmann Institute Scientists discover: A Survival Mechanism for Blood Cancer Cells

21.08.2007
A Weizmann Institute scientist and her research team have discovered a mechanism that helps cancer cells in a type of leukemia to survive. The scientists showed how an antibody, which may soon enter clinical trials for the leukemia, can block a key protein, causing the cancer cells to die.

Chronic Lymphocytic Leukemia is a type of blood cancer in which specific white blood cells, called B lymphocytes or B cells, build up in the blood, bone marrow and lymph nodes. The lifespan of a normal B cell is limited by an internal self-destruct program but, in cancer cells, this mechanism breaks down. B cells that don't self-destruct can live on to multiply and eventually accumulate in dangerous amounts.

A team of scientists headed by Prof. Idit Shachar of the Weizmann Institute's Immunology Department and Dr. Michal Haran of the Hematology Institute of the Kaplan Medical Center recently discovered what makes these cancer cells stay alive. They then launched a targeted attack on the survival mechanism they discovered and succeeded to significantly raise cancer cell mortality rates. Their findings, which appeared recently in Proceedings of the National Academy of Sciences (PNAS), may lead to future treatments for this disease, as well as for other diseases in which B lymphocytes accumulate in the blood.

In previous research, Shachar had found that a specific receptor - a protein on the outer surface of healthy B cells - fulfills a crucial role in helping these cells to survive. She wondered if the same protein might also be a central player in the abnormally high survival rates of cancerous B cells.

Members of Shachar's research team, including Inbal Binsky, Diana Starlets, Yael Gore and Frida Lantner, together Kaplan Medical Center doctors Haran, Lev Shvidel, Prof. Alan Berrebi and Nurit Harpaz, scientists from Yale University and David Goldenberg of the Garden State Cancer Center in New Jersey, examined B cells taken from chronic lymphocytic leukemia patients. They discovered that, even in the earliest stages of the disease, these cells have an unusually high level of both the survival receptor and another protein that binds to the receptor. The scientists found that this protein, in binding to the receptor, initiates a series of events within the cell that leads to enhanced cell survival capabilities. For instance, in one of these events, a substance is produced that helps to regulate the cells' lifespan. This substance causes another protein to be produced, which then prevents the self-destruct program from being activated.

The team treated the chronic lymphocytic leukemia cells with an antibody that attached to the survival receptor, blocking its activity and causing the cancer cell death rate to soar.

The antibodies they used are produced by the firm Immunomedics, in New Jersey, and are currently entering clinical trials for the treatment of several different types of cancer. Following this research, which has revealed the mechanism for the antibody's actions, the company is planning trials for chronic lymphocytic leukemia, as well.

Shachar: 'The abnormally elevated levels of this receptor seem to be important factors in the development of this disease, right from the beginning, and they are responsible for the longevity of these cancerous B cells. Blocking the receptor or other stages in the pathway they activate might be a winning tactic, in the future, in the war against cancers involving B cells.'

Prof. Idit Shachar's research is supported by the Weizmann Institute of Science-Yale Exchange Program; the Abisch Frenkel Foundation for the Promotion of Life Sciences, Switzerland; and Mr. Joe Gurwin, New York, NY. Prof. Shachar is the incumbent of the Dr. Morton and Anne Kleiman Professorial Chair.

The Weizmann Institute of Science in Rehovot, Israel, is one of the world's top-ranking multidisciplinary research institutions. Noted for its wide-ranging exploration of the natural and exact sciences, the Institute is home to 2,600 scientists, students, technicians and supporting staff. Institute research efforts include the search for new ways of fighting disease and hunger, examining leading questions in mathematics and computer science, probing the physics of matter and the universe, creating novel materials and developing new strategies for protecting the environment.

Yivsam Azgad | idw
Further information:
http://wis-wander.weizmann.ac.il

More articles from Health and Medicine:

nachricht Satellites, airport visibility readings shed light on troops' exposure to air pollution
09.12.2016 | Veterans Affairs Research Communications

nachricht Oxygen can wake up dormant bacteria for antibiotic attacks
08.12.2016 | Penn State

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>