Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new radiation therapy treatment developed for head and neck cancer patients in Finland

17.08.2007
Large doses of radiation can be targeted to cancer using a well-tolerated boron compound

Most head-and-neck cancers that recur locally after prior full-dose conventional radiation therapy respond to Boron Neutron Capture Therapy (BNCT). These results were obtained in a Phase I/II study at the Helsinki University Hospital, Finland. The scientific director of the research program, professor Heikki Joensuu, University of Helsinki, considers the results clinically significant and very interesting. They open a new field for BNCT, since thus far BNCT has been evaluated only in the treatment of some brain tumours.

The follow-up results of 12 patients diagnosed with cancer of the head-and-neck and treated in a prospective clinical trial were reported in the International Journal of Radiation Oncology, Biology & Physics (online version available: www.redjournal.org). All patients had cancer of the head-and-neck that had recurred locally after surgery and conventional radiation therapy. Ten out of the 12 patients had substantial tumour shrinkage following BNCT, and in 7 cases the tumour disappeared completely. Adverse effects of treatment were moderate and resembled those of conventional radiation therapy.

The study has been expanded, and up to 30 subjects will now be allowed to enter the study protocol.

Boron neutron capture therapy (BNCT) is a form of targeted radiation treatment for cancer. It is still considered experimental. In this method a boron-containing compound (boronophenylalanine) is first infused into a peripheral vein, following which the compound accumulates in cancer tissue. Cancer is subsequently irradiated with neutrons obtained from a nuclear reactor, which causes boron atoms to split within the cancerous tissue as a result from a boron neutron capture reaction. The resulting smaller particles cause a large radiation effect within the tumour tissue, which destroys cancer cells.

The technique allows targeting of a high dosage of radiation to the tumour while allowing sparing of the adjacent normal tissues from the highest doses of radiation. Boron-mediated targeting of radiation allows treatment of patients who can no longer be treated with conventional radiation therapy. BNCT is administered as single one-day treatment that may be repeated.

The study was sponsored by Boneca Corporation, the spinoff company operating on the medical campus of the Helsinki University and the University Central Hospital (www.boneca.fi). The treatments are carried out in collaboration with the Department of Oncology, Helsinki University Central Hospital, at the BNCT facility constructed at the VTT research nuclear reactor site located at Otaniemi, Espoo. The neutron radiation used in the treatment is provided by VTT.

Boneca Corporation’s clinical research program includes also a phase I/II study that evaluates BNCT in the treatment of primary glioblastoma (a highly malignant brain tumour) and another clinical trial that assesses safety and efficacy of BNCT in the treatment of glioblastomas and anaplastic astrocytomas (a type of brain tumour) that have recurred after conventional radiation therapy.

“Our plan is to investigate BNCT in the treatment of cancers located elsewhere in the body that cannot be effectively managed by any known treatment,” says professor Heikki Joensuu.

”The current treatment is a result of a long period of research, a proof of academic expertise, and a model for effective collaboration between Helsinki University Central Hospital, University of Helsinki, VTT Technical Research Centre of Finland, and the company”, says Boneca Corporation’s managing director Markku Pohjola.

Boneca Corporation is the only health care company focusing on BNCT in the world.

Over one hundred cancer patients have received BNCT at its facilities.

Paivi Lehtinen | alfa
Further information:
http://www.clinicaltrials.gov
http://www.boneca.fi
http://www.helsinki.fi

More articles from Health and Medicine:

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

nachricht Disrupted fat breakdown in the brain makes mice dumb
19.05.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>