Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new radiation therapy treatment developed for head and neck cancer patients in Finland

17.08.2007
Large doses of radiation can be targeted to cancer using a well-tolerated boron compound

Most head-and-neck cancers that recur locally after prior full-dose conventional radiation therapy respond to Boron Neutron Capture Therapy (BNCT). These results were obtained in a Phase I/II study at the Helsinki University Hospital, Finland. The scientific director of the research program, professor Heikki Joensuu, University of Helsinki, considers the results clinically significant and very interesting. They open a new field for BNCT, since thus far BNCT has been evaluated only in the treatment of some brain tumours.

The follow-up results of 12 patients diagnosed with cancer of the head-and-neck and treated in a prospective clinical trial were reported in the International Journal of Radiation Oncology, Biology & Physics (online version available: www.redjournal.org). All patients had cancer of the head-and-neck that had recurred locally after surgery and conventional radiation therapy. Ten out of the 12 patients had substantial tumour shrinkage following BNCT, and in 7 cases the tumour disappeared completely. Adverse effects of treatment were moderate and resembled those of conventional radiation therapy.

The study has been expanded, and up to 30 subjects will now be allowed to enter the study protocol.

Boron neutron capture therapy (BNCT) is a form of targeted radiation treatment for cancer. It is still considered experimental. In this method a boron-containing compound (boronophenylalanine) is first infused into a peripheral vein, following which the compound accumulates in cancer tissue. Cancer is subsequently irradiated with neutrons obtained from a nuclear reactor, which causes boron atoms to split within the cancerous tissue as a result from a boron neutron capture reaction. The resulting smaller particles cause a large radiation effect within the tumour tissue, which destroys cancer cells.

The technique allows targeting of a high dosage of radiation to the tumour while allowing sparing of the adjacent normal tissues from the highest doses of radiation. Boron-mediated targeting of radiation allows treatment of patients who can no longer be treated with conventional radiation therapy. BNCT is administered as single one-day treatment that may be repeated.

The study was sponsored by Boneca Corporation, the spinoff company operating on the medical campus of the Helsinki University and the University Central Hospital (www.boneca.fi). The treatments are carried out in collaboration with the Department of Oncology, Helsinki University Central Hospital, at the BNCT facility constructed at the VTT research nuclear reactor site located at Otaniemi, Espoo. The neutron radiation used in the treatment is provided by VTT.

Boneca Corporation’s clinical research program includes also a phase I/II study that evaluates BNCT in the treatment of primary glioblastoma (a highly malignant brain tumour) and another clinical trial that assesses safety and efficacy of BNCT in the treatment of glioblastomas and anaplastic astrocytomas (a type of brain tumour) that have recurred after conventional radiation therapy.

“Our plan is to investigate BNCT in the treatment of cancers located elsewhere in the body that cannot be effectively managed by any known treatment,” says professor Heikki Joensuu.

”The current treatment is a result of a long period of research, a proof of academic expertise, and a model for effective collaboration between Helsinki University Central Hospital, University of Helsinki, VTT Technical Research Centre of Finland, and the company”, says Boneca Corporation’s managing director Markku Pohjola.

Boneca Corporation is the only health care company focusing on BNCT in the world.

Over one hundred cancer patients have received BNCT at its facilities.

Paivi Lehtinen | alfa
Further information:
http://www.clinicaltrials.gov
http://www.boneca.fi
http://www.helsinki.fi

More articles from Health and Medicine:

nachricht Finnish research group discovers a new immune system regulator
23.02.2018 | University of Turku

nachricht Minimising risks of transplants
22.02.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>