Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Undersea mission aids development of self-test for stress and fatigue

14.08.2007
An undersea mission simulating the space environment will provide data for development of tools to quickly assess stress, fatigue and cognitive fitness in preparation for performing critical mission tasks.

“On exploration missions, quick, self tests could allow astronauts to assess how they are functioning from a cognitive performance standpoint as it relates to fatigue and stress,” said David F. Dinges, Ph.D., team leader of the National Space Biomedical Research Institute’s Neurobehavioral and Psychosocial Factors Team. “In this mission, we’ll gather data to help us refine the self tests and develop an interface component that provides immediate feedback to the user.”

Dinges and his colleagues are gathering data during the NASA Extreme Environment Mission Operations (NEEMO) 13 project which takes place in Aquarius, the world’s only underwater research habitat. Located near Key Largo, Fla., and 62 feet below the surface, Aquarius is owned and funded by the National Oceanic and Atmospheric Administration and operated by the University of North Carolina at Wilmington (UNCW). The mission runs Aug. 6 to 15.

“The NEEMO environment is similar to lunar and other exploration missions in many respects. There is isolation, confinement to a small habitat and work area, the need to work together as a team, extravehicular activities, and no immediate rescue in the event of an emergency,” said Dinges, a professor in psychiatry at University of Pennsylvania School of Medicine and leader of the NSBRI portion of the NEEMO projects.

Another similarity to space is that the aquanauts must perform tasks requiring high performance levels. During NEEMO 13, they will perform simulated moon walks on the ocean floor involving sample collection and construction of a communications tower.

Veteran astronaut and aquanaut, Nicholas Patrick, Ph.D., is leading NEEMO 13. He is joined by NASA astronaut Richard Arnold, Japan Aerospace Exploration Agency astronaut Dr. Satoshi Furukawa, and Christopher Gerty, a systems integration engineer with NASA’s Constellation Program. Jim Buckley and Dewey Smith of UNCW are providing undersea engineering support.

Dinges’ project uses several methods to gather data that will be used to assess the amount of fatigue and stress related to mission activities.

“The crew takes a three-minute test that measures vigilance, attention and psychomotor speed. We’ve learned from laboratory experiments that the test is sensitive to fatigue and other factors that impact a person’s ability to pay attention to a task and respond quickly,” Dinges said. “The test is taken at least four times a day – on waking, before and after simulated moon walks, dives and habitat experiments, and before bed.”

The Psychomotor Vigilance Test, or PVT, was developed through Dinges’ work with NSBRI, NASA, the Department of Defense and the National Institutes of Health. The user watches for a signal and responds when it appears, allowing the measurement of reaction times.

The crew also wears a wristwatch-sized device, called an Actiwatch®, that measures the sleep and wake cycle. The aquanauts provide saliva at various times each day including when they awake, before and after performing experiments and simulated moon walks, and before going to bed.

“With the saliva samples, we measure cortisol, a hormone that provides information on their stress levels,” Dinges said. “Cortisol is normally high in the morning; it’s a means of getting you going each day. If we see elevated cortisol after performing a high-level task, it would indicate some type of stress occurred during the activity.”

The crew fills out brief questionnaires about how hard they are working, so researchers can get a sense of their physical and mental workload. Another questionnaire focuses on mood and interpersonal interactions between the crew as well as with mission control personnel.

Dinges collected similar data during NEEMO 9 in April 2006 and NEEMO 12 in May 2007. The data from NEEMO 9, 12 and 13 will be integrated with other lab data, so that the next version of the vigilance test can be developed.

“Day in and day out, long-duration astronauts are never out of the work environment. With the type of complex, high-performance demands of the job, it will be helpful for individuals to quickly assess how they are doing relative to fatigue and stress,” Dinges said. “The test would give immediate feedback and solutions, if needed, to counter whatever is affecting performance. That might be to get some sleep, take motion sickness medicine, or any number of things.”

NSBRI, funded by NASA, is a consortium of institutions studying the health risks related to long-duration space flight. The Institute’s science, technology and education projects take place at more than 70 institutions across the United States.

Kathy Major | EurekAlert!
Further information:
http://www.nsbri.org/NewsPublicOut/20070810.html
http://www.bcm.edu

More articles from Health and Medicine:

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

nachricht The gut microbiota plays a key role in treatment with classic diabetes medication
01.06.2017 | University of Gothenburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>