Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High blood pressure, low energy -- a recipe for heart failure

14.08.2007
Many people with long-standing high blood pressure develop heart failure. But some don't. Daniel P. Kelly, M.D., and colleagues at Washington University School of Medicine in St. Louis and other institutions are trying to figure out what could explain that difference.

Their latest research reveals that impaired energy production in heart muscle may underlie heart failure in some hypertensive patients. The researchers assert that a molecular factor involved in maintaining the heart's energy supply could become a key to new approaches to prevent or treat heart failure.

The molecular factor, a protein called estrogen-related receptor alpha (ERR alpha), helps the heart keep up with energy-draining conditions like high blood pressure, which makes the heart work harder to pump blood. In the July issue of Cell Metabolism, Kelly and his colleagues report that mice born without any ERR alpha developed symptoms of heart failure when their hearts were forced to pump against high pressure. The hearts of normal mice took that pressure overload in stride and stayed healthy. Those contrasting outcomes suggest that heart health greatly depends on ERR alpha.

"The stress of a cardiac pressure overload asks heart muscle to manufacture more high energy compounds, and without ERR alpha, they can't do it," explains Kelly, the Tobias and Hortense Lewin Professor and Chief of the Cardiovascular Division. "You could say that in high blood pressure conditions, the heart fails because it becomes energy starved. And if you could feed the heart — by using a drug that enhances ERR, for example — you might enable the heart to better keep pace with its energy requirements."

Although preventions and treatments are now available for heart failure due to high blood pressure, almost all of those drugs act outside the heart by dilating blood vessels throughout the body to reduce resistance. In the future, doctors might look for diminished energy capacity in the hearts of hypertensive patients and administer drugs that would rev up energy-producing pathways such as those controlled by ERR alpha, according to Kelly. Kelly is also director of the Center for Cardiovascular Research and professor of medicine, of pediatrics and of molecular biology and pharmacology.

ERR alpha sits in the nucleus of cells and senses how much energy is needed. When a heart cell finds itself short on energy, say because it's being called on to contract harder or faster, its ERR is activated by an inducible co-activator called PGC-1, turning on genes that increase the heart's capacity to burn fats for fuel.

In mice that lacked ERR alpha and that were exposed to pressure overload, the researchers observed signs of early heart failure: the mouse hearts dilated and didn't contract effectively, the heart walls thinned, fibrous connective tissue accumulated and some heart cells died. They also saw that the hearts had depleted fuel reserves.

Kelly indicates that these studies show for the first time that changes in the ability of the heart to produce energy lead to heart failure in some cases. "ERR and some of its partners in the cell are a little like puppeteers controlling the expression of genes for energy production," Kelly says. "This research is especially exciting because ERR can be activated with small compounds, making it a good target for drugs."

Gwen Ericson | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Health and Medicine:

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

nachricht The gut microbiota plays a key role in treatment with classic diabetes medication
01.06.2017 | University of Gothenburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>