Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bioengineering To Prevent Iron Deficiency?

10.08.2007
Using selective plant breeding and genetic engineering could be used to reduce the incidence of iron deficiency worldwide by improving the quality of dietary iron, conclude authors of a Seminar in this week’s edition of The Lancet.

Dr Michael Zimmerman, Laboratory for Human Nutrition, Swiss Federal Institute of Technology, Zurich, and colleagues have reviewed published literature worldwide, mainly from the last five years, to prepare the Seminar, which looks at the issue of nutritional iron deficiency in both industrialised and developing countries.

The authors say: “Iron deficiency is one of the leading risk factors for disability and death worldwide, affecting an estimated 2 billion people…the high prevalence of iron deficiency in the developing world has substantial health and economic costs, including poor pregnancy outcome, impaired school performance, and decreased productivity.”

The World Health Organisation (WHO) estimates that 39% of children younger than five years, 48% of children between five and 14 years, 42% of all women, and 52% of pregnant women in developing countries are anaemic, with half having iron deficiency anaemia. WHO also believes that the frequency of iron deficiency in developing countries is around 2.5 times that of anaemia which is not iron deficiency related.

Dietary iron bioavailability (the measure of iron which can be absorbed from food) is low in populations consuming monotonous plant-based diets with little meat – ie. many developing countries. In an analysis of ten developing countries, the median value of physical productivity losses per year due to iron deficiency was around US $0.32 per head, or 0.57% of gross domestic product (GDP) for those nations. In the WHO Africa subregion, it is estimated that if iron fortification reached 50% of the population, it would avert 570,000 disability adjusted life years (DALYs- an international standard for measuring the effects of disability).

Iron deficiency has many reported consequences – children deficient in iron have higher susceptibility to upper respiratory tract infections, and anaemia which can affect their brain, motor activity and general performance in school, whilst adult manual laborers in developing countries were found to be less productive when iron-deficient, and left untreated for hookworm and other infections.

The three main strategies for correcting iron deficiency are supplementation (provision of iron without food), fortification of foods, and the relatively new approach of genetic engineering and plant breeding. The authors say: “Although dietary modification and diversification is the most sustainable approach, change of dietary practices and preferences is difficult, and foods that provide highly bioavailable iron (such as meat) are expensive.”

Supplementation can be targeted to high risk groups and be cost-effective; yet the logistics of distribution and absence of compliance are major limitations. Untargeted supplementation in children in tropical countries, mainly in areas of high transmission of malaria, is associated with increased infections.

Fortification is, say the authors, “probably the most practical, sustainable and cost-effective long-term solution to control iron deficiency at the national level.” The low incidence of iron deficiency anaemia in adolescent and young women in the USA might be at least partly due to consumption of iron-fortified wheat flour. Types of iron used for fortification vary depending on the situation, but in most cases cereal flour is fortified with ferrous sulphate, ferrous fumarate or several other common types of iron. Fortifying powdered milk has also been shown to benefit children in developing countries, with Chile reporting that the frequency of anaemia decreased from 27% to 9% after a powdered milk fortification programme.

However, while fortification is common and has proven benefits, loss of iron from both wheat and rice during the milling process means that keeping the levels of iron acceptable (40mg/kg) is difficult. This is where the authors believe genetic engineering can play a key role – eg. The iron content in rice can be increased two- to three-fold by introduction of the ferritin gene from the soy bean. Another problem – the reduction of bioavailable iron due to high phytate content – could also be solved by introducing genes which increase the activity of phytase enzymes to break down the phytate.

The authors conclude by calling for more data on the functional consequences of iron deficiency, eg. on immune function and cognition in infants and children. Due to the risks of untargeted supplementation in malaria-endemic countries, new strategies are urgently needed to provide additional dietary iron to susceptible infants and children that might not be reached by universal fortification programmes.

They conclude: “Selective plant breeding and genetic engineering are promising new approaches to improve dietary iron bioavailability, however a major challenge is to show that they can increase iron content to nutritionally useful levels and that the additional iron is bioavailable.”

Tony Kirby | alfa
Further information:
http://www.thelancet.com/webfiles/images/clusters/thelancet/press_office/seminar.pdf

More articles from Health and Medicine:

nachricht Chronic stress induces fatal organ dysfunctions via a new neural circuit
21.08.2017 | Hokkaido University

nachricht New malaria analysis method reveals disease severity in minutes
14.08.2017 | University of British Columbia

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>