Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Theory of facial aging gets a facelift from UT Southwestern researchers

The longstanding idea that the entire human face ages uniformly is in need of a facelift, say researchers at UT Southwestern Medical Center who have found that multiple, distinct compartments of fat in the face age at different rates.

The findings, published in a recent issue of Plastic and Reconstructive Surgery, challenge previously held theories regarding aging and may offer new ways to help turn back the clock, UT Southwestern plastic surgeons say.

“For hundreds of years, everyone has believed that the fat on the face is one confluent mass, which eventually gets weighed down by gravity, creating sagging skin,” said Dr. Joel Pessa, assistant professor of plastic surgery and the study’s lead author. “In our studies, however, we were surprised to find that this is not the case; the face is made up of individual fat compartments that gain and lose fat at different times and different rates as we age.”

The study involved injecting different types of dye into facial cavities of 30 cadavers. Despite at least 24 hours of settling time, the dye, rather than permeating the entire face, stayed in separate areas – showing that individual facial compartments have boundaries between them that act like fences. These fences, which seem to be composed of fibrous tissue, allow the face to maintain its blood supply should it become injured.

Dr. Pessa said the face resembles a three-dimensional puzzle, with fat divided into distinct units around the forehead, eyes, cheeks and mouth. Facial aging is, in part, characterized by how these separate compartments change as we grow older.

A youthful face is characterized by a smooth transition between these compartments. As people age, contour changes occur between these regions due to volume losses and gains as well as repositioning of the compartments. Eventually, this can result in sagging or hollowed skin and wrinkles.

“This is a revolutionary way of viewing facial anatomy. It not only tells us how we age, it shows us why we age the way we do, and why every part of the face, from the eyelids to the cheeks, ages differently,” said Dr. Rod Rohrich, chairman of plastic surgery and senior author of the study. “This will help plastic surgeons around the world not only understand how we can better rejuvenate the face, but how people age as a physiological process.”

This breakthrough could have tremendous implications in helping plastic surgeons target facial “trouble” areas and use injectible fillers to add volume to individual sections of the face. It could also aid in developing new and improved cosmetic and reconstructive surgery techniques, Dr. Rohrich said.

“Understanding how fat is compartmentalized will allow us to be very accurate and precise in how we approach facial rejuvenation,” Dr. Pessa said. “This gives us an algorithm, or scientific approach, to help ascertain what areas of the face may need extra fat to combat the aging process. It also is a major breakthrough in facial anatomy that will have major implications for future studies on aging and possibly hold clues to the study of other diseases such as obesity, diabetes and cancer.”

Donna Steph Hansard | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Advanced analysis of brain structure shape may track progression to Alzheimer's disease
26.10.2016 | Massachusetts General Hospital

nachricht Indian roadside refuse fires produce toxic rainbow
26.10.2016 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>