Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCSD researchers discover cause of rosacea

07.08.2007
Doctors can describe the symptoms of rosacea, a common inflammatory skin disease that causes facial redness and affects nearly 14 million Americans. They can tell patients what triggers can worsen their condition: spicy foods, heat, alcohol, even embarrassment. But until now, they could not explain what caused rosacea.

A team of researchers, led by Richard L. Gallo, M.D., Ph.D., professor of medicine and chief of the Division of Dermatology at the University of California, San Diego (UCSD) School of Medicine and the Dermatology section of the Veterans Affairs San Diego Healthcare System, has determined that it is not one, but a combination of two abnormal factors, that result in rosacea.

“It’s like having lots of gasoline…and a match,” said Gallo, principal investigator of the study which will be published in the August 5 online edition of Nature Medicine. In essence, the researchers found that over-production of two interactive inflammatory proteins results in excessive levels of a third protein that causes rosacea symptoms, “a trifecta of unfortunate factors in people with rosacea,” according to Gallo.

Rosacea, which has been called adult acne, usually affects people with fair skin, between the ages of 30 and 60. Unlike acne, rosacea isn’t associated with a skin infection by one type of bacteria, although antibiotics are sometimes prescribed to treat its symptoms. A chronic condition, it gets worse over time and is generally cyclic, flaring up for a period of weeks to months, and then subsiding for a time. Current treatments are often not effective.

Gallo and his colleagues first observed in the laboratory that anti-microbial peptides – small proteins of the body’s host defense system – caused the exact same symptoms in the skin that rosacea does, such as redness, an increase in visible blood vessels, bumps or pimples. The peptides also reacted to the same triggers.

“When we then looked at patients with the disease, every one of them had far more peptides than normal.” said Gallo.

To learn why these patients have abnormal peptides, the researchers examined the source of these molecules. The precursor form of these peptides, called cathelicidin, is normally known for its function to protect the skin against infection. In other skin diseases, a deficiency of cathelicidin correlates with increased infection. In rosacea patients, researchers found the opposite was true; too much cathelicidin was present in their skin. They also observed that it was a different form than found in people without the skin disorder.

Patients with rosacea also had greatly elevated levels of enzymes called stratum corneum tryptic enzymes (SCTE). These enzymes turned the precursor into the disease-causing peptide. By injecting mice with the cathelicidin peptides found in rosacea, or adding SCTE, they increased inflammation in the mouse skin, thus proving that these abnormalities can cause the disease.

“Too much SCTE and too much cathelicidin leads to the abnormal peptides that cause the symptoms of this disease,” said Gallo. “Antibiotics tend to alleviate the symptoms of rosacea in patients because some of them work to inhibit these enzymes. Our findings may modify the therapeutic approach to treating rosacea, since bacteria aren’t the right target.”

Debra Kain | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Health and Medicine:

nachricht Penn vet research identifies new target for taming Ebola
12.01.2017 | University of Pennsylvania

nachricht The strange double life of Dab2
10.01.2017 | University of Miami Miller School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>