Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCSD researchers discover cause of rosacea

07.08.2007
Doctors can describe the symptoms of rosacea, a common inflammatory skin disease that causes facial redness and affects nearly 14 million Americans. They can tell patients what triggers can worsen their condition: spicy foods, heat, alcohol, even embarrassment. But until now, they could not explain what caused rosacea.

A team of researchers, led by Richard L. Gallo, M.D., Ph.D., professor of medicine and chief of the Division of Dermatology at the University of California, San Diego (UCSD) School of Medicine and the Dermatology section of the Veterans Affairs San Diego Healthcare System, has determined that it is not one, but a combination of two abnormal factors, that result in rosacea.

“It’s like having lots of gasoline…and a match,” said Gallo, principal investigator of the study which will be published in the August 5 online edition of Nature Medicine. In essence, the researchers found that over-production of two interactive inflammatory proteins results in excessive levels of a third protein that causes rosacea symptoms, “a trifecta of unfortunate factors in people with rosacea,” according to Gallo.

Rosacea, which has been called adult acne, usually affects people with fair skin, between the ages of 30 and 60. Unlike acne, rosacea isn’t associated with a skin infection by one type of bacteria, although antibiotics are sometimes prescribed to treat its symptoms. A chronic condition, it gets worse over time and is generally cyclic, flaring up for a period of weeks to months, and then subsiding for a time. Current treatments are often not effective.

Gallo and his colleagues first observed in the laboratory that anti-microbial peptides – small proteins of the body’s host defense system – caused the exact same symptoms in the skin that rosacea does, such as redness, an increase in visible blood vessels, bumps or pimples. The peptides also reacted to the same triggers.

“When we then looked at patients with the disease, every one of them had far more peptides than normal.” said Gallo.

To learn why these patients have abnormal peptides, the researchers examined the source of these molecules. The precursor form of these peptides, called cathelicidin, is normally known for its function to protect the skin against infection. In other skin diseases, a deficiency of cathelicidin correlates with increased infection. In rosacea patients, researchers found the opposite was true; too much cathelicidin was present in their skin. They also observed that it was a different form than found in people without the skin disorder.

Patients with rosacea also had greatly elevated levels of enzymes called stratum corneum tryptic enzymes (SCTE). These enzymes turned the precursor into the disease-causing peptide. By injecting mice with the cathelicidin peptides found in rosacea, or adding SCTE, they increased inflammation in the mouse skin, thus proving that these abnormalities can cause the disease.

“Too much SCTE and too much cathelicidin leads to the abnormal peptides that cause the symptoms of this disease,” said Gallo. “Antibiotics tend to alleviate the symptoms of rosacea in patients because some of them work to inhibit these enzymes. Our findings may modify the therapeutic approach to treating rosacea, since bacteria aren’t the right target.”

Debra Kain | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Health and Medicine:

nachricht How cancer metastasis happens: Researchers reveal a key mechanism
19.01.2018 | Weill Cornell Medicine

nachricht Researchers identify new way to unmask melanoma cells to the immune system
17.01.2018 | Duke University Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>