Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCSD researchers discover cause of rosacea

07.08.2007
Doctors can describe the symptoms of rosacea, a common inflammatory skin disease that causes facial redness and affects nearly 14 million Americans. They can tell patients what triggers can worsen their condition: spicy foods, heat, alcohol, even embarrassment. But until now, they could not explain what caused rosacea.

A team of researchers, led by Richard L. Gallo, M.D., Ph.D., professor of medicine and chief of the Division of Dermatology at the University of California, San Diego (UCSD) School of Medicine and the Dermatology section of the Veterans Affairs San Diego Healthcare System, has determined that it is not one, but a combination of two abnormal factors, that result in rosacea.

“It’s like having lots of gasoline…and a match,” said Gallo, principal investigator of the study which will be published in the August 5 online edition of Nature Medicine. In essence, the researchers found that over-production of two interactive inflammatory proteins results in excessive levels of a third protein that causes rosacea symptoms, “a trifecta of unfortunate factors in people with rosacea,” according to Gallo.

Rosacea, which has been called adult acne, usually affects people with fair skin, between the ages of 30 and 60. Unlike acne, rosacea isn’t associated with a skin infection by one type of bacteria, although antibiotics are sometimes prescribed to treat its symptoms. A chronic condition, it gets worse over time and is generally cyclic, flaring up for a period of weeks to months, and then subsiding for a time. Current treatments are often not effective.

Gallo and his colleagues first observed in the laboratory that anti-microbial peptides – small proteins of the body’s host defense system – caused the exact same symptoms in the skin that rosacea does, such as redness, an increase in visible blood vessels, bumps or pimples. The peptides also reacted to the same triggers.

“When we then looked at patients with the disease, every one of them had far more peptides than normal.” said Gallo.

To learn why these patients have abnormal peptides, the researchers examined the source of these molecules. The precursor form of these peptides, called cathelicidin, is normally known for its function to protect the skin against infection. In other skin diseases, a deficiency of cathelicidin correlates with increased infection. In rosacea patients, researchers found the opposite was true; too much cathelicidin was present in their skin. They also observed that it was a different form than found in people without the skin disorder.

Patients with rosacea also had greatly elevated levels of enzymes called stratum corneum tryptic enzymes (SCTE). These enzymes turned the precursor into the disease-causing peptide. By injecting mice with the cathelicidin peptides found in rosacea, or adding SCTE, they increased inflammation in the mouse skin, thus proving that these abnormalities can cause the disease.

“Too much SCTE and too much cathelicidin leads to the abnormal peptides that cause the symptoms of this disease,” said Gallo. “Antibiotics tend to alleviate the symptoms of rosacea in patients because some of them work to inhibit these enzymes. Our findings may modify the therapeutic approach to treating rosacea, since bacteria aren’t the right target.”

Debra Kain | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>