Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Human knowledge is based upon directed connectivity between brain areas: How dynamic brain networks enable object recognition

06.08.2007
Which brain processes enable humans to rapidly access their personal knowledge? What happens if humans perceive either familiar or unfamiliar objects? The answer to these questions may lie in the direction of information flow transmitted between specialized brain areas that together establish a dynamic cortical network. This finding is reported in the latest issue of the scientific magazine PLoS ONE published on August 1st, 2007 [http://www.plosone.org/doi/pone.0000684].

Fruit or vegetable, insect or bird, familiar or unfamiliar – humans are used to classify objects in the world around them and group them into categories that have been formed and shaped constantly through every day's experience. Categorization during visual perception is exceptionally fast. Within just a fraction of a second we effortlessly access object-based knowledge, in particular if sufficient sensory information is available and the respective category is distinctly characterized by object features.

The precise neural mechanisms behind this brain function are currently not well understood. Several theoretical models are available, but empirical data and detailed measurements of brain processes in humans are still rare. In the last years of research evidence has accumulated to regard the brain as a parallel system with highly specialized compartments, so that different processing stages take place at different brain sites. According to the prominent theory of neuronal synchronization, cooperation between different brain areas is realized through synchronization of their rhythmic activity (30-100 Hz) leading to emergence of short-lasting dynamic networks.

An international team of scientists that includes biologists, engineers, physicists and psychologists has now investigated this network in humans by measuring electrical brain currents (EEG) and by applying the most advanced analysis techniques currently available.

”Human knowledge is definitely not stored in one single brain area. Access to knowledge results from the cooperation of several brain areas that jointly build a dynamic brain network. In this study we were not only able to confirm that recognition of familiar and unfamiliar objects activates a set of distributed brain areas. Rather, importantly, for the first time we have measured in humans how brain areas communicate with each other by directed information transfer, depending whether object-specific knowledge was available or not,' tells co-author and initiator of the study, Thomas Gruber of the Department of Psychology of the University of Leipzig.

The participants in Gruber's study were asked to categorize objects that were subsequently presented on a screen either as familiar or unfamiliar during the registration of their brain waves (EEG). Unfamiliar objects represented complex visual patterns, physically resembling the familiar ones in every possible way, except for familiarity. Familiar objects represented objects of every day's life such as cup, dog or violin. Actually, in the experiment only the factor familiarity was manipulated. Both conditions just differed in the possibility of the subjects to access specific, object-related knowledge in the course of recognition.

Based on previous studies the scientists expected to find not only a different level of brain activation in a set of distributed areas but also a different number of interactions between these areas.

“We expected that a larger number of brain interactions, a stronger degree of connectivity occurs, whenever a perceived object is familiar, that is whenever specific knowledge is available and can be used for processing. The contribution of our study is that by using a new method of signal analysis we succeeded in measuring the directionality of neuronal interactions. Cooperating brain areas forming a dynamic network are not just connected, but rather each area can be engaged either in receiving or sending signals or both. Until now this has been difficult to investigate, but our analysis suggests that most areas are involved in both during access to object-related knowledge,” states first author Gernot Supp with the Department of Neurophysiology, University Medical Center Hamburg-Eppendorf and the Max-Planck Institute of Human Cognitive and Brain Science, Leipzig, Germany.

“Traditional methods of analysis are insensitive to the true directionality of information flow. Here, for the first time, we investigated object recognition in humans by applying a new method, which in fact represents a measure of causality. With this measure, we were able to distinguish between feed-forward and feed-backward information flow and quantified the interaction between brain areas in greater detail”, reports Alois Schlögl, expert for biomedical signal processing at the University of Technology Graz, Austria and at the Fraunhofer Institute Berlin. He has made this new type of coupling analysis freely available for the scientific community in his open-source software-project BioSig (http://biosig.sf.net).

Together with the new method of directional coupling analysis these results may open a new perspective on brain processes. For the accurate execution of brain functions it might be crucial not only which brain areas are involved but, perhaps even more importantly, how they cooperate with each other. The investigation of this new dimension in brain research is just beginning.

The results are published in the August 1st issue of the online, open-access journal PloS ONE.

Andrew Hyde | alfa
Further information:
http://www.plosone.org
http://biosig.sf.net
http://www.plosone.org/doi/pone.0000684

More articles from Health and Medicine:

nachricht NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures
17.11.2017 | National Institute of Standards and Technology (NIST)

nachricht High speed video recording precisely measures blood cell velocity
15.11.2017 | ITMO University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Antarctic landscape insights keep ice loss forecasts on the radar

20.11.2017 | Earth Sciences

Filling the gap: High-latitude volcanic eruptions also have global impact

20.11.2017 | Earth Sciences

Water world

20.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>