Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Human knowledge is based upon directed connectivity between brain areas: How dynamic brain networks enable object recognition

06.08.2007
Which brain processes enable humans to rapidly access their personal knowledge? What happens if humans perceive either familiar or unfamiliar objects? The answer to these questions may lie in the direction of information flow transmitted between specialized brain areas that together establish a dynamic cortical network. This finding is reported in the latest issue of the scientific magazine PLoS ONE published on August 1st, 2007 [http://www.plosone.org/doi/pone.0000684].

Fruit or vegetable, insect or bird, familiar or unfamiliar – humans are used to classify objects in the world around them and group them into categories that have been formed and shaped constantly through every day's experience. Categorization during visual perception is exceptionally fast. Within just a fraction of a second we effortlessly access object-based knowledge, in particular if sufficient sensory information is available and the respective category is distinctly characterized by object features.

The precise neural mechanisms behind this brain function are currently not well understood. Several theoretical models are available, but empirical data and detailed measurements of brain processes in humans are still rare. In the last years of research evidence has accumulated to regard the brain as a parallel system with highly specialized compartments, so that different processing stages take place at different brain sites. According to the prominent theory of neuronal synchronization, cooperation between different brain areas is realized through synchronization of their rhythmic activity (30-100 Hz) leading to emergence of short-lasting dynamic networks.

An international team of scientists that includes biologists, engineers, physicists and psychologists has now investigated this network in humans by measuring electrical brain currents (EEG) and by applying the most advanced analysis techniques currently available.

”Human knowledge is definitely not stored in one single brain area. Access to knowledge results from the cooperation of several brain areas that jointly build a dynamic brain network. In this study we were not only able to confirm that recognition of familiar and unfamiliar objects activates a set of distributed brain areas. Rather, importantly, for the first time we have measured in humans how brain areas communicate with each other by directed information transfer, depending whether object-specific knowledge was available or not,' tells co-author and initiator of the study, Thomas Gruber of the Department of Psychology of the University of Leipzig.

The participants in Gruber's study were asked to categorize objects that were subsequently presented on a screen either as familiar or unfamiliar during the registration of their brain waves (EEG). Unfamiliar objects represented complex visual patterns, physically resembling the familiar ones in every possible way, except for familiarity. Familiar objects represented objects of every day's life such as cup, dog or violin. Actually, in the experiment only the factor familiarity was manipulated. Both conditions just differed in the possibility of the subjects to access specific, object-related knowledge in the course of recognition.

Based on previous studies the scientists expected to find not only a different level of brain activation in a set of distributed areas but also a different number of interactions between these areas.

“We expected that a larger number of brain interactions, a stronger degree of connectivity occurs, whenever a perceived object is familiar, that is whenever specific knowledge is available and can be used for processing. The contribution of our study is that by using a new method of signal analysis we succeeded in measuring the directionality of neuronal interactions. Cooperating brain areas forming a dynamic network are not just connected, but rather each area can be engaged either in receiving or sending signals or both. Until now this has been difficult to investigate, but our analysis suggests that most areas are involved in both during access to object-related knowledge,” states first author Gernot Supp with the Department of Neurophysiology, University Medical Center Hamburg-Eppendorf and the Max-Planck Institute of Human Cognitive and Brain Science, Leipzig, Germany.

“Traditional methods of analysis are insensitive to the true directionality of information flow. Here, for the first time, we investigated object recognition in humans by applying a new method, which in fact represents a measure of causality. With this measure, we were able to distinguish between feed-forward and feed-backward information flow and quantified the interaction between brain areas in greater detail”, reports Alois Schlögl, expert for biomedical signal processing at the University of Technology Graz, Austria and at the Fraunhofer Institute Berlin. He has made this new type of coupling analysis freely available for the scientific community in his open-source software-project BioSig (http://biosig.sf.net).

Together with the new method of directional coupling analysis these results may open a new perspective on brain processes. For the accurate execution of brain functions it might be crucial not only which brain areas are involved but, perhaps even more importantly, how they cooperate with each other. The investigation of this new dimension in brain research is just beginning.

The results are published in the August 1st issue of the online, open-access journal PloS ONE.

Andrew Hyde | alfa
Further information:
http://www.plosone.org
http://biosig.sf.net
http://www.plosone.org/doi/pone.0000684

More articles from Health and Medicine:

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

nachricht Highly precise wiring in the Cerebral Cortex
21.09.2017 | Max-Planck-Institut für Hirnforschung

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>