Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A study relates the neural damage provoked by Ecstasy with the ambient temperature at which it is consumed

06.08.2007
There exists a direct relationship between the consumption of MDMA, or Ecstasy, at a high ambient temperature and an increase in the neural damage which this drug provokes. This was the conclusion of the research carried out by Beatriz Goñi at the School of Pharmacy of the University of Navarra.

These results form part of her doctoral dissertation, entitled “A study of the neurotoxicity mechanism of 3.4-methylenedioxy-N-methylamphetamine (MDMA or ‘Ecstasy’) after its administration in rats: New responses to old questions.” By means of this study, the researcher was able to relate for the first time the body temperature of the user with a higher metabolism of this substance. There are two factors which, when they co-occurcan produce malignant hyperthermia, a disorder which can sometimes be fatal.

In order to come to this conclusion, the Pamplonan pharmaceutical specialist administered the drug to rats at ambient temperatures of 15, 21 and 30 degrees centigrade. After performing the pertinent analyses, she demonstrated that metabolism of Ecstasy is accelerated by higher ambient temperatures at the time of administration. In addition, higher ambient temperatures also increase, in the same proportion, the neurochemical deficit that affects the brains of the users of this drug.

Higher risk in closed establishments

According to Beatriz Goñi, the author of the study undertaken at the University of Navarra, the discoveries of this research project acquire more relevance precisely because Ecstasy is typically taken in closed environments, with lots of people and poor ventilation, due to which factors the temperature tends to be quite high.

In addition, she notes that the neural damage provoked by this substance, and which originally was only observed in rats, has already been demonstrated in humans, who appear to suffer severe damage to the serotoninergenic neurons, which are involved in processes as basic as sleep, appetite and mood regulation.

Finally, the pharmaceutical specialist noted that the damage caused by the consumption of MDMA is dependent upon its being metabolized after to its ingestion, since if it were administered directly to the brain, neuronal damage would not occur.

Irati Kortabitarte | alfa
Further information:
http://www.basqueresearch.com/berria_irakurri.asp?Berri_Kod=1420&hizk=I

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>