Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Reducing inflammation plays key role in type 1 diabetes therapy

02.08.2007
Researchers at Beth Israel Deaconess Medical Center (BIDMC) have found that a triple combination therapy consisting of both tolerance-inducing and anti-inflammatory properties is successful in abolishing adverse autoimmunity against insulin-producing cells in a mouse model of Type 1 diabetes.

The findings, which appear in the Online Early Edition of the Proceedings of the National Academy of Sciences (PNAS) this week, offer a possible new prototype for therapies to restore normal blood glucose levels in diabetes patients and suggest a previously unrecognized role for inflammation in the disease.

“Type 1 diabetes is known to develop as a consequence of autoimmune destruction of insulin-producing pancreatic beta cells,” explains senior author Terry Strom, MD, Director of the Transplantation Research Center at BIDMC and Professor of Medicine at Harvard Medical School. “But in addition to the long-recognized role of T-cell-dependent immune-system-mediated islet destruction, this work reveals for the first time that a form of inflammation in fat and muscle [is also acting to] prevent insulin from disposing blood glucose into tissues that require glucose.”

Formerly known as juvenile-onset or insulin-dependent diabetes, Type 1 diabetes develops when the body’s immune cells attack and destroy its own pancreatic beta cells. Without beta cells, the body is unable to produce insulin, a hormone needed to convert glucose into energy. To prevent the development of serious complications, more than 21 million individuals with Type 1 diabetes – primarily children and young adults – must receive as many as three injections of insulin each day.

Previous attempts to treat existing Type 1 diabetes were primarily focused on restoring immune tolerance, which in healthy individuals is achieved when immune system cells “turn off” so as not to overreact and attack one’s own cells. In individuals with Type 1 diabetes, the process of immune tolerance fails to work properly, thereby permitting the self-destruction of the body’s beta cells.

But lead author Maria Koulmanda, MSc, PhD, director of Non-Human Primate Research in BIDMC’s Transplantation Research Center, wondered if there might also be a role for inflammation in the disease process.

“We knew that in cases of type 2 [non-insulin dependent] diabetes, a form of inflammation in muscle and fat prevents insulin from triggering the transfer of glucose from the blood into important insulin-sensitive tissues,” explains Koulmanda, who is also Assistant Professor of Surgery at HMS. “We thought that in addition to autoimmune destruction of insulin-producing cells, there might also be inflammation-induced insulin resistance [in type 1 diabetes.]”

To test this hypothesis, the authors administered a “cocktail” of three separate agents (rapamycin plus agonist IL-2- and antagonist-type, mutant IL-15-related Ig fusion proteins) in a NOD (non-obese diabetes) mouse model of type 1 diabetes. The therapy regimen, which included two novel immunoglobulin-fusion proteins, was aimed at both increasing tolerance and decreasing inflammation.

As predicted, following two to four weeks of treatment, the mice that had received the triple therapy maintained normal levels of blood sugar. In contrast, the control group of diabetic mice did not survive, despite receiving insulin.

The authors then conducted a molecular analysis which confirmed that the treatment had eliminated insulin resistance and relieved inflammation in the animals’ fat and muscle tissues.

“Although the treatment halted the progressive loss of insulin producing cells, the restoration of normal blood glucose levels actually was the result of inflammation being ablated in fat and muscle cells,” explains Strom. “By blocking the inflammation, we were able to restore the animals’ abilities to respond to insulin.”

“Our findings are very promising,” adds Koulmanda. “Type 1 diabetes is a serious disease requiring that children and young adults take insulin two to three times a day.”

And, she adds, despite this arduous therapy, insulin treatment does not prevent the occurrence of serious late-arising complications, including kidney failure, blindness and widespread cardiovascular disease.

“In clinical practice, it is not currently possible to identify when and if an individual will develop type 1 diabetes,” says Koulmanda. “Therefore, it is urgent to identify treatments that can restore normal blood glucose levels in patients with new-onset diabetes before insulin-producing cells are totally destroyed. We hope that our findings offer new hope in the long search for a cure of type 1 diabetes.”

Bonnie Prescott | EurekAlert!
Further information:
http://www.bidmc.harvard.edu

More articles from Health and Medicine:

nachricht A promising target for kidney fibrosis
21.04.2017 | Brigham and Women's Hospital

nachricht Stem cell transplants: activating signal paths may protect from graft-versus-host disease
20.04.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>