Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Reducing inflammation plays key role in type 1 diabetes therapy

02.08.2007
Researchers at Beth Israel Deaconess Medical Center (BIDMC) have found that a triple combination therapy consisting of both tolerance-inducing and anti-inflammatory properties is successful in abolishing adverse autoimmunity against insulin-producing cells in a mouse model of Type 1 diabetes.

The findings, which appear in the Online Early Edition of the Proceedings of the National Academy of Sciences (PNAS) this week, offer a possible new prototype for therapies to restore normal blood glucose levels in diabetes patients and suggest a previously unrecognized role for inflammation in the disease.

“Type 1 diabetes is known to develop as a consequence of autoimmune destruction of insulin-producing pancreatic beta cells,” explains senior author Terry Strom, MD, Director of the Transplantation Research Center at BIDMC and Professor of Medicine at Harvard Medical School. “But in addition to the long-recognized role of T-cell-dependent immune-system-mediated islet destruction, this work reveals for the first time that a form of inflammation in fat and muscle [is also acting to] prevent insulin from disposing blood glucose into tissues that require glucose.”

Formerly known as juvenile-onset or insulin-dependent diabetes, Type 1 diabetes develops when the body’s immune cells attack and destroy its own pancreatic beta cells. Without beta cells, the body is unable to produce insulin, a hormone needed to convert glucose into energy. To prevent the development of serious complications, more than 21 million individuals with Type 1 diabetes – primarily children and young adults – must receive as many as three injections of insulin each day.

Previous attempts to treat existing Type 1 diabetes were primarily focused on restoring immune tolerance, which in healthy individuals is achieved when immune system cells “turn off” so as not to overreact and attack one’s own cells. In individuals with Type 1 diabetes, the process of immune tolerance fails to work properly, thereby permitting the self-destruction of the body’s beta cells.

But lead author Maria Koulmanda, MSc, PhD, director of Non-Human Primate Research in BIDMC’s Transplantation Research Center, wondered if there might also be a role for inflammation in the disease process.

“We knew that in cases of type 2 [non-insulin dependent] diabetes, a form of inflammation in muscle and fat prevents insulin from triggering the transfer of glucose from the blood into important insulin-sensitive tissues,” explains Koulmanda, who is also Assistant Professor of Surgery at HMS. “We thought that in addition to autoimmune destruction of insulin-producing cells, there might also be inflammation-induced insulin resistance [in type 1 diabetes.]”

To test this hypothesis, the authors administered a “cocktail” of three separate agents (rapamycin plus agonist IL-2- and antagonist-type, mutant IL-15-related Ig fusion proteins) in a NOD (non-obese diabetes) mouse model of type 1 diabetes. The therapy regimen, which included two novel immunoglobulin-fusion proteins, was aimed at both increasing tolerance and decreasing inflammation.

As predicted, following two to four weeks of treatment, the mice that had received the triple therapy maintained normal levels of blood sugar. In contrast, the control group of diabetic mice did not survive, despite receiving insulin.

The authors then conducted a molecular analysis which confirmed that the treatment had eliminated insulin resistance and relieved inflammation in the animals’ fat and muscle tissues.

“Although the treatment halted the progressive loss of insulin producing cells, the restoration of normal blood glucose levels actually was the result of inflammation being ablated in fat and muscle cells,” explains Strom. “By blocking the inflammation, we were able to restore the animals’ abilities to respond to insulin.”

“Our findings are very promising,” adds Koulmanda. “Type 1 diabetes is a serious disease requiring that children and young adults take insulin two to three times a day.”

And, she adds, despite this arduous therapy, insulin treatment does not prevent the occurrence of serious late-arising complications, including kidney failure, blindness and widespread cardiovascular disease.

“In clinical practice, it is not currently possible to identify when and if an individual will develop type 1 diabetes,” says Koulmanda. “Therefore, it is urgent to identify treatments that can restore normal blood glucose levels in patients with new-onset diabetes before insulin-producing cells are totally destroyed. We hope that our findings offer new hope in the long search for a cure of type 1 diabetes.”

Bonnie Prescott | EurekAlert!
Further information:
http://www.bidmc.harvard.edu

More articles from Health and Medicine:

nachricht Hot cars can hit deadly temperatures in as little as one hour
24.05.2018 | Arizona State University

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>