Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Reducing inflammation plays key role in type 1 diabetes therapy

02.08.2007
Researchers at Beth Israel Deaconess Medical Center (BIDMC) have found that a triple combination therapy consisting of both tolerance-inducing and anti-inflammatory properties is successful in abolishing adverse autoimmunity against insulin-producing cells in a mouse model of Type 1 diabetes.

The findings, which appear in the Online Early Edition of the Proceedings of the National Academy of Sciences (PNAS) this week, offer a possible new prototype for therapies to restore normal blood glucose levels in diabetes patients and suggest a previously unrecognized role for inflammation in the disease.

“Type 1 diabetes is known to develop as a consequence of autoimmune destruction of insulin-producing pancreatic beta cells,” explains senior author Terry Strom, MD, Director of the Transplantation Research Center at BIDMC and Professor of Medicine at Harvard Medical School. “But in addition to the long-recognized role of T-cell-dependent immune-system-mediated islet destruction, this work reveals for the first time that a form of inflammation in fat and muscle [is also acting to] prevent insulin from disposing blood glucose into tissues that require glucose.”

Formerly known as juvenile-onset or insulin-dependent diabetes, Type 1 diabetes develops when the body’s immune cells attack and destroy its own pancreatic beta cells. Without beta cells, the body is unable to produce insulin, a hormone needed to convert glucose into energy. To prevent the development of serious complications, more than 21 million individuals with Type 1 diabetes – primarily children and young adults – must receive as many as three injections of insulin each day.

Previous attempts to treat existing Type 1 diabetes were primarily focused on restoring immune tolerance, which in healthy individuals is achieved when immune system cells “turn off” so as not to overreact and attack one’s own cells. In individuals with Type 1 diabetes, the process of immune tolerance fails to work properly, thereby permitting the self-destruction of the body’s beta cells.

But lead author Maria Koulmanda, MSc, PhD, director of Non-Human Primate Research in BIDMC’s Transplantation Research Center, wondered if there might also be a role for inflammation in the disease process.

“We knew that in cases of type 2 [non-insulin dependent] diabetes, a form of inflammation in muscle and fat prevents insulin from triggering the transfer of glucose from the blood into important insulin-sensitive tissues,” explains Koulmanda, who is also Assistant Professor of Surgery at HMS. “We thought that in addition to autoimmune destruction of insulin-producing cells, there might also be inflammation-induced insulin resistance [in type 1 diabetes.]”

To test this hypothesis, the authors administered a “cocktail” of three separate agents (rapamycin plus agonist IL-2- and antagonist-type, mutant IL-15-related Ig fusion proteins) in a NOD (non-obese diabetes) mouse model of type 1 diabetes. The therapy regimen, which included two novel immunoglobulin-fusion proteins, was aimed at both increasing tolerance and decreasing inflammation.

As predicted, following two to four weeks of treatment, the mice that had received the triple therapy maintained normal levels of blood sugar. In contrast, the control group of diabetic mice did not survive, despite receiving insulin.

The authors then conducted a molecular analysis which confirmed that the treatment had eliminated insulin resistance and relieved inflammation in the animals’ fat and muscle tissues.

“Although the treatment halted the progressive loss of insulin producing cells, the restoration of normal blood glucose levels actually was the result of inflammation being ablated in fat and muscle cells,” explains Strom. “By blocking the inflammation, we were able to restore the animals’ abilities to respond to insulin.”

“Our findings are very promising,” adds Koulmanda. “Type 1 diabetes is a serious disease requiring that children and young adults take insulin two to three times a day.”

And, she adds, despite this arduous therapy, insulin treatment does not prevent the occurrence of serious late-arising complications, including kidney failure, blindness and widespread cardiovascular disease.

“In clinical practice, it is not currently possible to identify when and if an individual will develop type 1 diabetes,” says Koulmanda. “Therefore, it is urgent to identify treatments that can restore normal blood glucose levels in patients with new-onset diabetes before insulin-producing cells are totally destroyed. We hope that our findings offer new hope in the long search for a cure of type 1 diabetes.”

Bonnie Prescott | EurekAlert!
Further information:
http://www.bidmc.harvard.edu

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>