Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Promising treatment target found in Hodgkin lymphoma

31.07.2007
Researchers hope to knock out molecular 'bodyguard' that helps Hodgkin cells survive

Dana-Farber Cancer Institute scientists have identified a protein that prevents the body's immune system from recognizing and attacking Hodgkin lymphoma cells. Based on this finding, the researchers are now investigating targeted therapies to disable this molecular "bodyguard" and boost a patient's ability to fight the blood cancer.

If the strategy proves successful, patients might escape some of the long-term complications -- like heart damage and the threat of a second cancer -- caused by standard treatments that include radiation, said Margaret Shipp, MD, of Dana-Farber, who headed the study. A report will be posted online by the Proceedings of the National Academy of Sciences on July 30 and will appear in an upcoming print issue of the journal.

"We're excited about this treatment lead," said Shipp, a medical oncologist. "We are currently generating antibodies that can neutralize the 'bodyguard' protein, and we’d like to fast-track this experimental therapy into clinical trials."

Nearly 8,200 people in the United States -- the great majority of them young adults -- will be diagnosed with Hodgkin lymphoma in 2007, according to the American Cancer Society, with an estimated 1,070 deaths. The cancer begins in the lymph nodes and channels that distribute infection-fighting white blood cells around the body. Its symptoms can include swollen glands in the neck, night sweats and fatigue.

The biological trademark of Hodgkin lymphoma is a type of giant, mutant white blood cell called the Reed-Sternberg cell that is found in the lymph node tumors. While most solid cancers consist almost entirely of tumor cells, says Shipp, Hodgkin tumors, which can reach the size of a basketball, contain only about 5 percent cancerous Reed-Sternberg cells; the rest are different types of immune cells recruited to fight the tumor, but they are ineffective.

"You would expect with all these host immune cells attracted to the area of the tumor cells that they would mount a great antitumor response," Shipp says. "But that's not the case. There are a lot of immune cells, but they're the wrong kind."

The immune army includes different types of T cells, such as T helper 1 (Th1) cells designed to recognize and kill foreign infectious agents and sometimes tumors, T helper 2 (Th2) cells, which normally control allergic responses, and T regulatory (Treg) cells that suppress other T-cell types and shut down an immune response when the job is done. The Hodgkin tumors are overloaded with Th2 and Treg cells that act as bodyguards for the cancer by weakening the Th1 immune response against it.

Przemyslaw Juszczynski, MD, PhD, Jing Ouyang, PhD, and colleagues from the Shipp laboratory, together with collaborators from Brigham and Women's Hospital, the Broad Institute and the University of Buenos Aires, hunted for the source of the cancer cells' protection. Using gene microarray chips, the scientists looked for genes that were active in Reed-Sternberg cells but not in cells of another non-Hodgkin B-cell lymphoma.

The comparison revealed that a gene called Gal1 was up to 30 times more active in the Reed-Sternberg cells, causing them to secrete large quantities of a protein -- Gal1 or Galectin 1 -- that turns down the Th1 immune response. The Shipp team then defined the mechanism for Gal1 overexpression in Hodgkin lymphoma. Next, they demonstrated that Th1 immune cells underwent apoptosis, or cell death, when treated with Gal1, leaving increased numbers of Th2 cells and the suppressive Treg cells. Using a gene-silencing technique, RNA interference or RNAi, they then turned off the Gal1 gene in Hodgkin Reed-Sternberg cells and showed that it blocked the death of infiltrating normal Th1 cells, making them an equal force to the Th2 cells.

"Likely what's happening here is that the tumor cells essentially hijack a normal regulatory program and use it to avoid being knocked off by the immune response," explains Shipp, who is also a professor of medicine at Harvard Medical School. "These observations provide an important explanation for why you have this ineffective immune response in Hodgkin lymphoma."

She adds that this bodyguard strategy may not be limited to Hodgkin lymphoma. One of the collaborating authors, Gabriel Rabinovich, PhD, of the University of Buenos Aires, has blocked Gal1 in mice with a form of the deadly skin cancer melanoma, and the animal's immune system succeeded in eliminating the cancer, Shipp says. "We think it's very possible that this strategy will be applicable to other types of cancer."

Bill Schaller | EurekAlert!
Further information:
http://www.dana-farber.org

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>