Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

System to analyse beating heart stem cells could lead to heart attack treatments

30.07.2007
New research at the University of Nottingham, funded by the Biotechnology and Biological Sciences Research Council (BBSRC), is paving the way for techniques that use stem cells to repair the damage caused by heart attacks.

The research, highlighted in the new issue of BBSRC Business, is looking at the process that turns a stem cell into a cardiomyocyte - the beating cell that makes up the heart. The Nottingham researchers are developing a new system to monitor cardiomyocytes in real time as they differentiate from stem cells into beating heart cells. The system uses electrophysiology to record the electrical properties in a cell and will be the first time it has been used to study cardiomyocyte cells in the UK.

The researchers hope that their research could provide more detailed information on the electrical activity of stem cell derived cardiomyocytes. In the longer term, this could facilitate their use in regenerating the damaged hearts of heart attack victims.

"Human embryonic stem cells promise unrivalled opportunities. However, they are difficult, time-consuming and expensive to grow in the lab", Dr Denning explains. "Our understanding of how to convert them into cardiomyocytes is poor. At the moment we only know how to produce a few million cardiomyocytes, but to treat just one heart attack patient, we may need one billion that all function in the correct way."

To help overcome the many challenges that stem cells bring, Dr Denning and his team plan to engineer a novel system for real-time analysis of cardiomyocytes during early development so their properties are better understood.

The team have already demonstrated that sufficient numbers of stem cell-derived cardiomyocytes can be produced for detailed analysis and they plan to use new 'electrophysiology' systems to record changes in the cells when cultured. Electrophysiology is the study of cells' electrical properties and this is the first time that the method has been used in the UK to study stem cell-cardiomyocyte biology.

"This research will enable rapid development of stem cell-derived cardiomyocytes as a tool for understanding the heart and its diseases," says Dr Denning. However, he cautions: "Before we can consider using stem cells to treat heart-attack patients there are many problems which will take many years to solve. We don't yet know how to deliver the cells to a patient's heart and prevent them being washed away so that they actually stay in the heart and both survive and function. It will take many years to overcome these challenges and put stem cell-derived cardiomyocytes into medical usage."

The researchers will also be monitoring how the cells respond to different pharmacological agents in order to improve drug-screening processes and reduce the need for animal testing.

"A key part of the project is to monitor the effects of different drugs on the cells. At present, only limited information is available on how they respond to pharmacological or gene modulating agents.

"Between 1990 and 2001, 8 different drugs were withdrawn from the market in the USA at an estimated cost of $8billion because they caused unexpected deaths in several hundred patients. Our aim is to reduce such occurrences by having better test methods to test the drugs before they reach the clinic.

"By studying the drugs' effects on the heart cells in the lab, this could reduce the need for animals in clinical trials."

Michelle Kilfoyle | alfa
Further information:
http://www.bbsrc.ac.uk

More articles from Health and Medicine:

nachricht Researchers identify new way to unmask melanoma cells to the immune system
17.01.2018 | Duke University Medical Center

nachricht Study advances gene therapy for glaucoma
17.01.2018 | University of Wisconsin-Madison

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Polymers Based on Boron?

18.01.2018 | Life Sciences

Bioengineered soft microfibers improve T-cell production

18.01.2018 | Life Sciences

World’s oldest known oxygen oasis discovered

18.01.2018 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>