Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UB Scientist Discovers Novel Iron-Copper Alliance

25.07.2007
New Research to Define How the Dietary Components Work in Tandem

Iron is the workhorse of trace minerals. An essential component of red blood cells, disruption of iron levels in the body will result in a myriad of serious conditions, and life cannot be sustained without it.

In novel research, investigators at the University at Buffalo's School of Public Health and Health Professions, have learned that iron is only one half of an all-important duo of trace minerals -- the other being copper -- that work in tandem to maintain proper iron balance, or homeostasis.

It appears the workhorse has a helper.

James F. Collins, Ph.D., UB assistant professor of exercise and nutrition sciences and biochemistry, discovered that when iron-absorption by cells lining the small intestine decreases during iron-deficient states, copper absorption increases.

Collins now is exploring the relationship between these two trace minerals through a $1.38 million grant from the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK).

The work will be carried out using established models of intestinal iron absorption in humans, including iron and iron/copper-deficient rodents and cultured intestinal epithelial cells.

"This project is intended to test the overall hypothesis that increased copper transport during iron-deficiency is critical to enhance certain aspects of intestinal iron absorption," said Collins.

"Iron or copper deficiency causes anemia, and abnormal intestinal iron transport is associated with several common human pathologies, including anemia of chronic disease (ACD) and hereditary hemochromatosis (HH), different forms of which result from several common genetic defects."

HH is an inherited metabolic disorder characterized by abnormally high absorption of dietary iron, which is deposited in body tissues and organs, where it may become toxic. ACD is a blood disorder caused by low body iron levels resulting from any medical condition that affects the production and lifespan of red blood cells, such as chronic infection, chronic immune activation resulting in inflammation, or malignancy.

"In collaboration with Dr. Zihua Hu, Ph.D., a computational scientist at UB's New York State Center of Excellence in Bioinformatics and Life Sciences, we determined that several genes related to iron and copper homeostasis were strongly induced by iron deprivation across different developmental stages in the rat small intestine," said Collins. "We will concentrate on understanding the role of two key proteins encoded by these genes: an intestinal iron transporter called divalent metal transporter 1 (Dmt1) and an intestinal copper transporter, the Menkes copper ATPase (Atp7a)."

The overall goal of the project is to answer three specific questions regarding the role of copper in intestinal iron transport, Collins noted: 1) Are Atp7a and Dmt1 solely responsible for enhancing dietary copper absorption during iron-deficiency? 2) What are the molecular mechanisms leading to induction of the Atp7a and Dmt1 genes? and 3) Which physiological processes related to intestinal iron ion homeostasis are enhanced by increased copper levels in enterocytes (cells of the superficial layer of the intestines) and in the liver?

"We also expect to learn more about the mechanisms of dietary copper absorption, which currently are not well defined," Collins said. "Furthermore, studies addressing the impact of increased enterocyte and liver copper levels during iron-deficiency have not been reported in the scientific literature to date, so this investigation is novel. "

Key collaborators at UB are Hu, Michael D. Garrick, Ph.D., professor of biochemistry, and Laura M. Garrick, Ph.D., research associate professor of biochemistry.

The University at Buffalo is a premier research-intensive public university, the largest and most comprehensive campus in the State University of New York. UB's more than 27,000 students pursue their academic interests through more than 300 undergraduate, graduate and professional degree programs. Founded in 1846, the University at Buffalo is a member of the Association of American Universities. The School of Public Health and Health Professions is one of five schools that constitute UB's Academic Health Center.

Lois Baker | EurekAlert!
Further information:
http://www.buffalo.edu

More articles from Health and Medicine:

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

nachricht Flexible sensors can detect movement in GI tract
11.10.2017 | Massachusetts Institute of Technology

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

Im Focus: Small collisions make big impact on Mercury's thin atmosphere

Mercury, our smallest planetary neighbor, has very little to call an atmosphere, but it does have a strange weather pattern: morning micro-meteor showers.

Recent modeling along with previously published results from NASA's MESSENGER spacecraft -- short for Mercury Surface, Space Environment, Geochemistry and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

Conference Week RRR2017 on Renewable Resources from Wet and Rewetted Peatlands

28.09.2017 | Event News

 
Latest News

A single photon reveals quantum entanglement of 16 million atoms

16.10.2017 | Physics and Astronomy

The melting ice makes the sea around Greenland less saline

16.10.2017 | Earth Sciences

On the generation of solar spicules and Alfvenic waves

16.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>