Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Investigating the causes of Parkinson’s disease

23.07.2007
A University of Nottingham researcher has been awarded more than £440,000 by the Parkinson’s Disease Society (PDS) to investigate the causes of the condition.

Dr Lynn Bedford, of the School of Biomedical Sciences, will lead a five-year study after receiving an award from the PDS under its Career Development Awards Scheme, which aims to support the careers of the UK’s most promising individuals working in Parkinson’s research.

Dr Bedford will be using a new genetic model of Parkinson’s to further understanding of how and why nerve cells die. Her research will also take a closer look at the reasons for the formation of Lewy bodies — a build-up of proteins within nerve cells — in the brains of people with Parkinson’s.

This study is aimed at providing a platform for the development of drugs to stop nerve cell death.

Dr Kieran Breen, Director of Research and Development for the Parkinson’s Disease Society, said: “Researchers are the people who make the discoveries and forge the links between different research areas so clearly investing in people is key to furthering our understanding of Parkinson’s.

“The Career Development Awards Scheme is aimed at increasing the number of people involved in Parkinson’s research and encouraging the UK’s top researchers of the future to specialise in Parkinson’s.”

Parkinson’s is a progressive neurological condition caused by the death of nerve cells in the brain that produce the chemical dopamine, which is responsible for movement. The condition affects movements such as walking, talking, and writing. Its three main symptoms are tremor, muscular rigidity, and slowness of movement. Parkinson’s is a very individual condition and the rate and nature of progression varies from person to person.

Dr Bedford said: “I have been involved in Parkinson’s disease research for the last five years so I am delighted to get this Career Development Award. This novel model of Parkinson’s will be crucial in helping to uncover and study why nerve cells die in the region of the brain affected in Parkinson’s disease.

“At Nottingham we have an excellent team who are committed to understanding this model. I look forward to driving this interesting new avenue of research and interacting with individuals, both researchers and clinicians, in the field of Parkinson’s.”

Approximately 120,000 people in the UK have Parkinson’s, and 10,000 are diagnosed with the condition every year. Although more common in people aged over 60, about one in 20 of those diagnosed each year are under 40.

Dr Breen added: “The Parkinson’s Disease Society is very pleased to be funding Dr Bedford’s study. Furthering our understanding of the causes of Parkinson’s will hopefully lead to the development of new treatments for the condition, making a difference to the lives of the 120,000 people in the UK with Parkinson’s.”

The PDS has spent more than £30m on research since 1969, including almost £4m in 2006. Studies funded use basic and applied science as well as health and social care projects to investigate the causes, treatment, prevention and cure for Parkinson’s.

The Parkinson’s Disease Society (PDS) is the UK’s leading authority on all aspects of the condition. The charity campaigns for a better quality of life for people with Parkinson’s. The PDS provides field staff and local information and maintains 300 branches.

Emma Thorne | alfa
Further information:
http://www.parkinsons.org.uk
http://www.nottingham.ac.uk

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Camera on NASA's Lunar Orbiter survived 2014 meteoroid hit

29.05.2017 | Physics and Astronomy

Strathclyde-led research develops world's highest gain high-power laser amplifier

29.05.2017 | Physics and Astronomy

A 3-D look at the 2015 El Niño

29.05.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>