Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Purdue-IU researchers explore new method for early disease diagnosis

20.07.2007
University researchers worked with the Indiana University School of Medicine to establish a technique that provides a new approach for detecting a number of genetic disorders found in infants and young children.

Daniel Raftery, a Purdue professor of analytical and physical chemistry, and his collaborators used a simple chemical reaction to improve the ability to detect important molecules in complex fluids like blood and urine. The technique makes the markers for some genetically caused metabolic disorders up to 100 times more visible, Raftery said.

"This technique allows us to profile a class of biomarkers - molecules that indicate disease - that would otherwise be very difficult to detect," he said. "The increased sensitivity could allow doctors to diagnose a range of diseases at very early stages. We examined genetically based metabolic disorders, or inborn errors of metabolism, because it is especially important that they be treated early in a child's life in order to prevent tragic effects such as brain damage. The technique also could catch borderline cases that may have otherwise gone undiagnosed until serious symptoms arose."

Bryan Hainline, director of the clinical division of the Department of Medical and Molecular Genetics and clinical associate professor in the metabolism division of the Department of Pediatrics at Indiana University School of Medicine, provided access to clinical samples and insight into the markers of metabolic disorders. The IU team was critical to the success of this work, Raftery said.

"The combination of Purdue's research strength in chemistry and the IU School of Medicine team's knowledge of pediatric metabolic disorders allowed us to quickly advance this technology," he said. "We were able to evaluate the accuracy of the technique by testing it on samples known to contain certain concentrations of various markers."

This method of analysis, called metabolomics, involves the simultaneous analysis of multiple small molecules, or metabolites, which occur in fluids and tissues in the body. The presence of a particular metabolite, grouping of metabolites or ratio of metabolites can indicate a response to biological stress or a specific disease state.

"The metabolic profile in biofluids, such as blood and urine, provides a snapshot of ongoing biological processes in the human body," Raftery said. "This type of analysis could be a key to earlier detection of diseases. Metabolic analysis is currently being developed to identify diseases such as cancer and cardiovascular disease. However, we need to continue to work to refine and improve the techniques to provide early detection."

Raftery and his team used nuclear magnetic resonance spectroscopy, a cousin of magnetic resonance imaging, which provides a reproducible and quantitative measure that provides the broadest spectrum of molecules for metabolite profiling. The spectrum is represented by a pattern of peaks corresponding to different frequencies that can be used to identify the molecules like amino acids in biofluids. Each metabolite has a unique pattern of peaks.

Researchers use nuclear magnetic resonance to detect hydrogen or carbon atoms to provide insight into the metabolites present, however this standard approach has disadvantages, Raftery said. The signals from carbon atoms are very weak and are difficult to detect, while the signals from hydrogen atoms often overlap. In particular, metabolites present in high concentrations overlap those present in low concentrations.

Raftery and his team enhanced the visibility of a certain type of metabolites, amino acids, by chemically tagging the molecules of interest so that they are more easily visible.

"We added a chemical that reacts with the amino acids and similar metabolites and forms a tag that can be seen through nuclear magnetic resonance," he said. "The tag actually is an easily identifiable isotope, in this case a carbon atom that is heavier than the standard carbon atom. Because we can easily detect this isotope, it causes these tagged metabolites to effectively pop out against the background of all of the others."

In addition to Raftery and Hainline, Narasimhamurthy Shanaiah, M. Aruni Desilva, G. A. Nagana Gowda and Michael A. Raftery, all from Purdue's Department of Chemistry, co-authored a paper detailing this research that was published in the July 10 issue of the Proceedings of the National Academy of Sciences.

In addition to its increased sensitivity, the new testing method requires little pretreatment of the sample and roughly 0.5 milliliters of blood to perform the test. The entire test can be performed in about half an hour, providing a quick turnaround for results and treatment decisions for patients, Raftery said.

"It is a very simple process and would not require much training to perform the tests," he said. "It is an easily reproducible test that can be done over and over again, which is important to ensure accurate diagnosis."

Raftery said he plans to continue to work with the IU School of Medicine to perform additional tests on clinical samples, to look at more samples from borderline cases and to examine other diseases.

"This approach is applicable to a variety of molecule types and other fluids, and has the potential for additional applications," Raftery said. "We plan to test more samples and to determine if this methodology proves to be sensitive to cancer and heart disease, as it is for metabolic disorders. We also plan to try other sample types such as tissue."

The National Institutes of Health funded this research in addition to a collaborative biomedical research grant from Purdue University's Discovery Park and the Indiana University School of Medicine.

Writer: Elizabeth K. Gardner, (765) 494-2081, ekgardner@purdue.edu
Source: Daniel Raftery, (765) 494-6070, raftery@purdue.edu
Purdue News Service: (765) 494-2096; purduenews@purdue.edu

Elizabeth K. Gardner | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Health and Medicine:

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

nachricht The gut microbiota plays a key role in treatment with classic diabetes medication
01.06.2017 | University of Gothenburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>