Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Purdue-IU researchers explore new method for early disease diagnosis

20.07.2007
University researchers worked with the Indiana University School of Medicine to establish a technique that provides a new approach for detecting a number of genetic disorders found in infants and young children.

Daniel Raftery, a Purdue professor of analytical and physical chemistry, and his collaborators used a simple chemical reaction to improve the ability to detect important molecules in complex fluids like blood and urine. The technique makes the markers for some genetically caused metabolic disorders up to 100 times more visible, Raftery said.

"This technique allows us to profile a class of biomarkers - molecules that indicate disease - that would otherwise be very difficult to detect," he said. "The increased sensitivity could allow doctors to diagnose a range of diseases at very early stages. We examined genetically based metabolic disorders, or inborn errors of metabolism, because it is especially important that they be treated early in a child's life in order to prevent tragic effects such as brain damage. The technique also could catch borderline cases that may have otherwise gone undiagnosed until serious symptoms arose."

Bryan Hainline, director of the clinical division of the Department of Medical and Molecular Genetics and clinical associate professor in the metabolism division of the Department of Pediatrics at Indiana University School of Medicine, provided access to clinical samples and insight into the markers of metabolic disorders. The IU team was critical to the success of this work, Raftery said.

"The combination of Purdue's research strength in chemistry and the IU School of Medicine team's knowledge of pediatric metabolic disorders allowed us to quickly advance this technology," he said. "We were able to evaluate the accuracy of the technique by testing it on samples known to contain certain concentrations of various markers."

This method of analysis, called metabolomics, involves the simultaneous analysis of multiple small molecules, or metabolites, which occur in fluids and tissues in the body. The presence of a particular metabolite, grouping of metabolites or ratio of metabolites can indicate a response to biological stress or a specific disease state.

"The metabolic profile in biofluids, such as blood and urine, provides a snapshot of ongoing biological processes in the human body," Raftery said. "This type of analysis could be a key to earlier detection of diseases. Metabolic analysis is currently being developed to identify diseases such as cancer and cardiovascular disease. However, we need to continue to work to refine and improve the techniques to provide early detection."

Raftery and his team used nuclear magnetic resonance spectroscopy, a cousin of magnetic resonance imaging, which provides a reproducible and quantitative measure that provides the broadest spectrum of molecules for metabolite profiling. The spectrum is represented by a pattern of peaks corresponding to different frequencies that can be used to identify the molecules like amino acids in biofluids. Each metabolite has a unique pattern of peaks.

Researchers use nuclear magnetic resonance to detect hydrogen or carbon atoms to provide insight into the metabolites present, however this standard approach has disadvantages, Raftery said. The signals from carbon atoms are very weak and are difficult to detect, while the signals from hydrogen atoms often overlap. In particular, metabolites present in high concentrations overlap those present in low concentrations.

Raftery and his team enhanced the visibility of a certain type of metabolites, amino acids, by chemically tagging the molecules of interest so that they are more easily visible.

"We added a chemical that reacts with the amino acids and similar metabolites and forms a tag that can be seen through nuclear magnetic resonance," he said. "The tag actually is an easily identifiable isotope, in this case a carbon atom that is heavier than the standard carbon atom. Because we can easily detect this isotope, it causes these tagged metabolites to effectively pop out against the background of all of the others."

In addition to Raftery and Hainline, Narasimhamurthy Shanaiah, M. Aruni Desilva, G. A. Nagana Gowda and Michael A. Raftery, all from Purdue's Department of Chemistry, co-authored a paper detailing this research that was published in the July 10 issue of the Proceedings of the National Academy of Sciences.

In addition to its increased sensitivity, the new testing method requires little pretreatment of the sample and roughly 0.5 milliliters of blood to perform the test. The entire test can be performed in about half an hour, providing a quick turnaround for results and treatment decisions for patients, Raftery said.

"It is a very simple process and would not require much training to perform the tests," he said. "It is an easily reproducible test that can be done over and over again, which is important to ensure accurate diagnosis."

Raftery said he plans to continue to work with the IU School of Medicine to perform additional tests on clinical samples, to look at more samples from borderline cases and to examine other diseases.

"This approach is applicable to a variety of molecule types and other fluids, and has the potential for additional applications," Raftery said. "We plan to test more samples and to determine if this methodology proves to be sensitive to cancer and heart disease, as it is for metabolic disorders. We also plan to try other sample types such as tissue."

The National Institutes of Health funded this research in addition to a collaborative biomedical research grant from Purdue University's Discovery Park and the Indiana University School of Medicine.

Writer: Elizabeth K. Gardner, (765) 494-2081, ekgardner@purdue.edu
Source: Daniel Raftery, (765) 494-6070, raftery@purdue.edu
Purdue News Service: (765) 494-2096; purduenews@purdue.edu

Elizabeth K. Gardner | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Health and Medicine:

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>